/* [auto_generated] boost/numeric/odeint/integrate/integrate_const.hpp [begin_description] Constant integration of ODEs, meaning that the state of the ODE is observed on constant time intervals. The routines makes full use of adaptive and dense-output methods. [end_description] Copyright 2011-2013 Karsten Ahnert Copyright 2011-2015 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_CONST_HPP_INCLUDED #define BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_CONST_HPP_INCLUDED #include #include #include #include #include #include namespace boost { namespace numeric { namespace odeint { /* * Integrates with constant time step dt. */ template size_t integrate_const( Stepper stepper, System system, State &start_state, Time start_time, Time end_time, Time dt, Observer observer, StepOverflowChecker checker ) { typedef typename odeint::unwrap_reference::type::stepper_category stepper_category; // we want to get as fast as possible to the end // no overflow checks needed if (boost::is_same::value) { return detail::integrate_adaptive( stepper, system, start_state, start_time, end_time, dt, observer, stepper_category()); } else { // unwrap references typedef typename odeint::unwrap_reference< Stepper >::type stepper_type; typedef typename odeint::unwrap_reference< Observer >::type observer_type; typedef typename odeint::unwrap_reference< StepOverflowChecker >::type checker_type; return detail::integrate_const(checked_stepper(stepper, checker), system, start_state, start_time, end_time, dt, checked_observer(observer, checker), stepper_category()); } } /** * \brief Second version to solve the forwarding problem, * can be called with Boost.Range as start_state. */ template size_t integrate_const( Stepper stepper, System system, const State &start_state, Time start_time, Time end_time, Time dt, Observer observer, StepOverflowChecker checker ) { typedef typename odeint::unwrap_reference::type::stepper_category stepper_category; // we want to get as fast as possible to the end if (boost::is_same::value) { return detail::integrate_adaptive( stepper, system, start_state, start_time, end_time, dt, observer, stepper_category()); } else { typedef typename odeint::unwrap_reference< Stepper >::type stepper_type; typedef typename odeint::unwrap_reference< Observer >::type observer_type; typedef typename odeint::unwrap_reference< StepOverflowChecker >::type checker_type; return detail::integrate_const(checked_stepper(stepper, checker), system, start_state, start_time, end_time, dt, checked_observer(observer, checker), stepper_category()); } } /** * \brief integrate_const without step overflow checker */ template size_t integrate_const( Stepper stepper, System system, State &start_state, Time start_time, Time end_time, Time dt, Observer observer) { typedef typename odeint::unwrap_reference::type::stepper_category stepper_category; return detail::integrate_const(stepper, system, start_state, start_time, end_time, dt, observer, stepper_category()); } /** * \brief Second version to solve the forwarding problem, * can be called with Boost.Range as start_state. */ template size_t integrate_const( Stepper stepper, System system, const State &start_state, Time start_time, Time end_time, Time dt, Observer observer ) { typedef typename odeint::unwrap_reference::type::stepper_category stepper_category; return detail::integrate_const(stepper, system, start_state, start_time, end_time, dt, observer, stepper_category()); } /** * \brief integrate_const without observer calls */ template size_t integrate_const( Stepper stepper, System system, State &start_state, Time start_time, Time end_time, Time dt ) { return integrate_const(stepper, system, start_state, start_time, end_time, dt, null_observer()); } /** * \brief Second version to solve the forwarding problem, * can be called with Boost.Range as start_state. */ template size_t integrate_const( Stepper stepper, System system, const State &start_state, Time start_time, Time end_time, Time dt ) { return integrate_const(stepper, system, start_state, start_time, end_time, dt, null_observer()); } /********* DOXYGEN *********/ /** * \fn integrate_const( Stepper stepper , System system , State &start_state , Time start_time , * Time end_time , Time dt , Observer observer , StepOverflowChecker checker ) * \brief Integrates the ODE with constant step size. * * Integrates the ODE defined by system using the given stepper. * This method ensures that the observer is called at constant intervals dt. * If the Stepper is a normal stepper without step size control, dt is also * used for the numerical scheme. If a ControlledStepper is provided, the * algorithm might reduce the step size to meet the error bounds, but it is * ensured that the observer is always called at equidistant time points * t0 + n*dt. If a DenseOutputStepper is used, the step size also may vary * and the dense output is used to call the observer at equidistant time * points. * If a max_step_checker is provided as StepOverflowChecker, a * no_progress_error is thrown if too many steps (default: 500) are performed * without progress, i.e. in between observer calls. If no checker is provided, * no such overflow check is performed. * * \param stepper The stepper to be used for numerical integration. * \param system Function/Functor defining the rhs of the ODE. * \param start_state The initial condition x0. * \param start_time The initial time t0. * \param end_time The final integration time tend. * \param dt The time step between observer calls, _not_ necessarily the * time step of the integration. * \param observer [optional] Function/Functor called at equidistant time intervals. * \param checker [optional] Functor to check for step count overflows, if no * checker is provided, no exception is thrown. * \return The number of steps performed. */ } // namespace odeint } // namespace numeric } // namespace boost #endif // BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_CONST_HPP_INCLUDED