123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938 |
- /*
- ** $Id: ltable.c $
- ** Lua tables (hash)
- ** See Copyright Notice in lua.h
- */
- #define ltable_c
- #define LUA_CORE
- #include "lprefix.h"
- /*
- ** Implementation of tables (aka arrays, objects, or hash tables).
- ** Tables keep its elements in two parts: an array part and a hash part.
- ** Non-negative integer keys are all candidates to be kept in the array
- ** part. The actual size of the array is the largest 'n' such that
- ** more than half the slots between 1 and n are in use.
- ** Hash uses a mix of chained scatter table with Brent's variation.
- ** A main invariant of these tables is that, if an element is not
- ** in its main position (i.e. the 'original' position that its hash gives
- ** to it), then the colliding element is in its own main position.
- ** Hence even when the load factor reaches 100%, performance remains good.
- */
- #include <math.h>
- #include <limits.h>
- #include "lua.h"
- #include "ldebug.h"
- #include "ldo.h"
- #include "lgc.h"
- #include "lmem.h"
- #include "lobject.h"
- #include "lstate.h"
- #include "lstring.h"
- #include "ltable.h"
- #include "lvm.h"
- /*
- ** MAXABITS is the largest integer such that MAXASIZE fits in an
- ** unsigned int.
- */
- #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
- /*
- ** MAXASIZE is the maximum size of the array part. It is the minimum
- ** between 2^MAXABITS and the maximum size that, measured in bytes,
- ** fits in a 'size_t'.
- */
- #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
- /*
- ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
- ** signed int.
- */
- #define MAXHBITS (MAXABITS - 1)
- /*
- ** MAXHSIZE is the maximum size of the hash part. It is the minimum
- ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
- ** it fits in a 'size_t'.
- */
- #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
- #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
- #define hashstr(t,str) hashpow2(t, (str)->hash)
- #define hashboolean(t,p) hashpow2(t, p)
- #define hashint(t,i) hashpow2(t, i)
- /*
- ** for some types, it is better to avoid modulus by power of 2, as
- ** they tend to have many 2 factors.
- */
- #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
- #define hashpointer(t,p) hashmod(t, point2uint(p))
- #define dummynode (&dummynode_)
- static const Node dummynode_ = {
- {{NULL}, LUA_VEMPTY, /* value's value and type */
- LUA_VNIL, 0, {NULL}} /* key type, next, and key value */
- };
- static const TValue absentkey = {ABSTKEYCONSTANT};
- /*
- ** Hash for floating-point numbers.
- ** The main computation should be just
- ** n = frexp(n, &i); return (n * INT_MAX) + i
- ** but there are some numerical subtleties.
- ** In a two-complement representation, INT_MAX does not has an exact
- ** representation as a float, but INT_MIN does; because the absolute
- ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
- ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
- ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
- ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
- ** INT_MIN.
- */
- #if !defined(l_hashfloat)
- static int l_hashfloat (lua_Number n) {
- int i;
- lua_Integer ni;
- n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
- if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
- lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
- return 0;
- }
- else { /* normal case */
- unsigned int u = cast_uint(i) + cast_uint(ni);
- return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
- }
- }
- #endif
- /*
- ** returns the 'main' position of an element in a table (that is,
- ** the index of its hash value). The key comes broken (tag in 'ktt'
- ** and value in 'vkl') so that we can call it on keys inserted into
- ** nodes.
- */
- static Node *mainposition (const Table *t, int ktt, const Value *kvl) {
- switch (withvariant(ktt)) {
- case LUA_VNUMINT:
- return hashint(t, ivalueraw(*kvl));
- case LUA_VNUMFLT:
- return hashmod(t, l_hashfloat(fltvalueraw(*kvl)));
- case LUA_VSHRSTR:
- return hashstr(t, tsvalueraw(*kvl));
- case LUA_VLNGSTR:
- return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl)));
- case LUA_VFALSE:
- return hashboolean(t, 0);
- case LUA_VTRUE:
- return hashboolean(t, 1);
- case LUA_VLIGHTUSERDATA:
- return hashpointer(t, pvalueraw(*kvl));
- case LUA_VLCF:
- return hashpointer(t, fvalueraw(*kvl));
- default:
- return hashpointer(t, gcvalueraw(*kvl));
- }
- }
- /*
- ** Returns the main position of an element given as a 'TValue'
- */
- static Node *mainpositionTV (const Table *t, const TValue *key) {
- return mainposition(t, rawtt(key), valraw(key));
- }
- /*
- ** Check whether key 'k1' is equal to the key in node 'n2'. This
- ** equality is raw, so there are no metamethods. Floats with integer
- ** values have been normalized, so integers cannot be equal to
- ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
- ** that short strings are handled in the default case.
- ** A true 'deadok' means to accept dead keys as equal to their original
- ** values. All dead keys are compared in the default case, by pointer
- ** identity. (Only collectable objects can produce dead keys.) Note that
- ** dead long strings are also compared by identity.
- ** Once a key is dead, its corresponding value may be collected, and
- ** then another value can be created with the same address. If this
- ** other value is given to 'next', 'equalkey' will signal a false
- ** positive. In a regular traversal, this situation should never happen,
- ** as all keys given to 'next' came from the table itself, and therefore
- ** could not have been collected. Outside a regular traversal, we
- ** have garbage in, garbage out. What is relevant is that this false
- ** positive does not break anything. (In particular, 'next' will return
- ** some other valid item on the table or nil.)
- */
- static int equalkey (const TValue *k1, const Node *n2, int deadok) {
- if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
- !(deadok && keyisdead(n2) && iscollectable(k1)))
- return 0; /* cannot be same key */
- switch (keytt(n2)) {
- case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
- return 1;
- case LUA_VNUMINT:
- return (ivalue(k1) == keyival(n2));
- case LUA_VNUMFLT:
- return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
- case LUA_VLIGHTUSERDATA:
- return pvalue(k1) == pvalueraw(keyval(n2));
- case LUA_VLCF:
- return fvalue(k1) == fvalueraw(keyval(n2));
- case ctb(LUA_VLNGSTR):
- return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
- default:
- return gcvalue(k1) == gcvalueraw(keyval(n2));
- }
- }
- /*
- ** True if value of 'alimit' is equal to the real size of the array
- ** part of table 't'. (Otherwise, the array part must be larger than
- ** 'alimit'.)
- */
- #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
- /*
- ** Returns the real size of the 'array' array
- */
- LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
- if (limitequalsasize(t))
- return t->alimit; /* this is the size */
- else {
- unsigned int size = t->alimit;
- /* compute the smallest power of 2 not smaller than 'n' */
- size |= (size >> 1);
- size |= (size >> 2);
- size |= (size >> 4);
- size |= (size >> 8);
- size |= (size >> 16);
- #if (UINT_MAX >> 30) > 3
- size |= (size >> 32); /* unsigned int has more than 32 bits */
- #endif
- size++;
- lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
- return size;
- }
- }
- /*
- ** Check whether real size of the array is a power of 2.
- ** (If it is not, 'alimit' cannot be changed to any other value
- ** without changing the real size.)
- */
- static int ispow2realasize (const Table *t) {
- return (!isrealasize(t) || ispow2(t->alimit));
- }
- static unsigned int setlimittosize (Table *t) {
- t->alimit = luaH_realasize(t);
- setrealasize(t);
- return t->alimit;
- }
- #define limitasasize(t) check_exp(isrealasize(t), t->alimit)
- /*
- ** "Generic" get version. (Not that generic: not valid for integers,
- ** which may be in array part, nor for floats with integral values.)
- ** See explanation about 'deadok' in function 'equalkey'.
- */
- static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
- Node *n = mainpositionTV(t, key);
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (equalkey(key, n, deadok))
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0)
- return &absentkey; /* not found */
- n += nx;
- }
- }
- }
- /*
- ** returns the index for 'k' if 'k' is an appropriate key to live in
- ** the array part of a table, 0 otherwise.
- */
- static unsigned int arrayindex (lua_Integer k) {
- if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */
- return cast_uint(k); /* 'key' is an appropriate array index */
- else
- return 0;
- }
- /*
- ** returns the index of a 'key' for table traversals. First goes all
- ** elements in the array part, then elements in the hash part. The
- ** beginning of a traversal is signaled by 0.
- */
- static unsigned int findindex (lua_State *L, Table *t, TValue *key,
- unsigned int asize) {
- unsigned int i;
- if (ttisnil(key)) return 0; /* first iteration */
- i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
- if (i - 1u < asize) /* is 'key' inside array part? */
- return i; /* yes; that's the index */
- else {
- const TValue *n = getgeneric(t, key, 1);
- if (unlikely(isabstkey(n)))
- luaG_runerror(L, "invalid key to 'next'"); /* key not found */
- i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
- /* hash elements are numbered after array ones */
- return (i + 1) + asize;
- }
- }
- int luaH_next (lua_State *L, Table *t, StkId key) {
- unsigned int asize = luaH_realasize(t);
- unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
- for (; i < asize; i++) { /* try first array part */
- if (!isempty(&t->array[i])) { /* a non-empty entry? */
- setivalue(s2v(key), i + 1);
- setobj2s(L, key + 1, &t->array[i]);
- return 1;
- }
- }
- for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */
- if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
- Node *n = gnode(t, i);
- getnodekey(L, s2v(key), n);
- setobj2s(L, key + 1, gval(n));
- return 1;
- }
- }
- return 0; /* no more elements */
- }
- static void freehash (lua_State *L, Table *t) {
- if (!isdummy(t))
- luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
- }
- /*
- ** {=============================================================
- ** Rehash
- ** ==============================================================
- */
- /*
- ** Compute the optimal size for the array part of table 't'. 'nums' is a
- ** "count array" where 'nums[i]' is the number of integers in the table
- ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
- ** integer keys in the table and leaves with the number of keys that
- ** will go to the array part; return the optimal size. (The condition
- ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
- */
- static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
- int i;
- unsigned int twotoi; /* 2^i (candidate for optimal size) */
- unsigned int a = 0; /* number of elements smaller than 2^i */
- unsigned int na = 0; /* number of elements to go to array part */
- unsigned int optimal = 0; /* optimal size for array part */
- /* loop while keys can fill more than half of total size */
- for (i = 0, twotoi = 1;
- twotoi > 0 && *pna > twotoi / 2;
- i++, twotoi *= 2) {
- a += nums[i];
- if (a > twotoi/2) { /* more than half elements present? */
- optimal = twotoi; /* optimal size (till now) */
- na = a; /* all elements up to 'optimal' will go to array part */
- }
- }
- lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
- *pna = na;
- return optimal;
- }
- static int countint (lua_Integer key, unsigned int *nums) {
- unsigned int k = arrayindex(key);
- if (k != 0) { /* is 'key' an appropriate array index? */
- nums[luaO_ceillog2(k)]++; /* count as such */
- return 1;
- }
- else
- return 0;
- }
- /*
- ** Count keys in array part of table 't': Fill 'nums[i]' with
- ** number of keys that will go into corresponding slice and return
- ** total number of non-nil keys.
- */
- static unsigned int numusearray (const Table *t, unsigned int *nums) {
- int lg;
- unsigned int ttlg; /* 2^lg */
- unsigned int ause = 0; /* summation of 'nums' */
- unsigned int i = 1; /* count to traverse all array keys */
- unsigned int asize = limitasasize(t); /* real array size */
- /* traverse each slice */
- for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
- unsigned int lc = 0; /* counter */
- unsigned int lim = ttlg;
- if (lim > asize) {
- lim = asize; /* adjust upper limit */
- if (i > lim)
- break; /* no more elements to count */
- }
- /* count elements in range (2^(lg - 1), 2^lg] */
- for (; i <= lim; i++) {
- if (!isempty(&t->array[i-1]))
- lc++;
- }
- nums[lg] += lc;
- ause += lc;
- }
- return ause;
- }
- static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
- int totaluse = 0; /* total number of elements */
- int ause = 0; /* elements added to 'nums' (can go to array part) */
- int i = sizenode(t);
- while (i--) {
- Node *n = &t->node[i];
- if (!isempty(gval(n))) {
- if (keyisinteger(n))
- ause += countint(keyival(n), nums);
- totaluse++;
- }
- }
- *pna += ause;
- return totaluse;
- }
- /*
- ** Creates an array for the hash part of a table with the given
- ** size, or reuses the dummy node if size is zero.
- ** The computation for size overflow is in two steps: the first
- ** comparison ensures that the shift in the second one does not
- ** overflow.
- */
- static void setnodevector (lua_State *L, Table *t, unsigned int size) {
- if (size == 0) { /* no elements to hash part? */
- t->node = cast(Node *, dummynode); /* use common 'dummynode' */
- t->lsizenode = 0;
- t->lastfree = NULL; /* signal that it is using dummy node */
- }
- else {
- int i;
- int lsize = luaO_ceillog2(size);
- if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
- luaG_runerror(L, "table overflow");
- size = twoto(lsize);
- t->node = luaM_newvector(L, size, Node);
- for (i = 0; i < (int)size; i++) {
- Node *n = gnode(t, i);
- gnext(n) = 0;
- setnilkey(n);
- setempty(gval(n));
- }
- t->lsizenode = cast_byte(lsize);
- t->lastfree = gnode(t, size); /* all positions are free */
- }
- }
- /*
- ** (Re)insert all elements from the hash part of 'ot' into table 't'.
- */
- static void reinsert (lua_State *L, Table *ot, Table *t) {
- int j;
- int size = sizenode(ot);
- for (j = 0; j < size; j++) {
- Node *old = gnode(ot, j);
- if (!isempty(gval(old))) {
- /* doesn't need barrier/invalidate cache, as entry was
- already present in the table */
- TValue k;
- getnodekey(L, &k, old);
- setobjt2t(L, luaH_set(L, t, &k), gval(old));
- }
- }
- }
- /*
- ** Exchange the hash part of 't1' and 't2'.
- */
- static void exchangehashpart (Table *t1, Table *t2) {
- lu_byte lsizenode = t1->lsizenode;
- Node *node = t1->node;
- Node *lastfree = t1->lastfree;
- t1->lsizenode = t2->lsizenode;
- t1->node = t2->node;
- t1->lastfree = t2->lastfree;
- t2->lsizenode = lsizenode;
- t2->node = node;
- t2->lastfree = lastfree;
- }
- /*
- ** Resize table 't' for the new given sizes. Both allocations (for
- ** the hash part and for the array part) can fail, which creates some
- ** subtleties. If the first allocation, for the hash part, fails, an
- ** error is raised and that is it. Otherwise, it copies the elements from
- ** the shrinking part of the array (if it is shrinking) into the new
- ** hash. Then it reallocates the array part. If that fails, the table
- ** is in its original state; the function frees the new hash part and then
- ** raises the allocation error. Otherwise, it sets the new hash part
- ** into the table, initializes the new part of the array (if any) with
- ** nils and reinserts the elements of the old hash back into the new
- ** parts of the table.
- */
- void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
- unsigned int nhsize) {
- unsigned int i;
- Table newt; /* to keep the new hash part */
- unsigned int oldasize = setlimittosize(t);
- TValue *newarray;
- /* create new hash part with appropriate size into 'newt' */
- setnodevector(L, &newt, nhsize);
- if (newasize < oldasize) { /* will array shrink? */
- t->alimit = newasize; /* pretend array has new size... */
- exchangehashpart(t, &newt); /* and new hash */
- /* re-insert into the new hash the elements from vanishing slice */
- for (i = newasize; i < oldasize; i++) {
- if (!isempty(&t->array[i]))
- luaH_setint(L, t, i + 1, &t->array[i]);
- }
- t->alimit = oldasize; /* restore current size... */
- exchangehashpart(t, &newt); /* and hash (in case of errors) */
- }
- /* allocate new array */
- newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
- if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
- freehash(L, &newt); /* release new hash part */
- luaM_error(L); /* raise error (with array unchanged) */
- }
- /* allocation ok; initialize new part of the array */
- exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
- t->array = newarray; /* set new array part */
- t->alimit = newasize;
- for (i = oldasize; i < newasize; i++) /* clear new slice of the array */
- setempty(&t->array[i]);
- /* re-insert elements from old hash part into new parts */
- reinsert(L, &newt, t); /* 'newt' now has the old hash */
- freehash(L, &newt); /* free old hash part */
- }
- void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
- int nsize = allocsizenode(t);
- luaH_resize(L, t, nasize, nsize);
- }
- /*
- ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
- */
- static void rehash (lua_State *L, Table *t, const TValue *ek) {
- unsigned int asize; /* optimal size for array part */
- unsigned int na; /* number of keys in the array part */
- unsigned int nums[MAXABITS + 1];
- int i;
- int totaluse;
- for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
- setlimittosize(t);
- na = numusearray(t, nums); /* count keys in array part */
- totaluse = na; /* all those keys are integer keys */
- totaluse += numusehash(t, nums, &na); /* count keys in hash part */
- /* count extra key */
- if (ttisinteger(ek))
- na += countint(ivalue(ek), nums);
- totaluse++;
- /* compute new size for array part */
- asize = computesizes(nums, &na);
- /* resize the table to new computed sizes */
- luaH_resize(L, t, asize, totaluse - na);
- }
- /*
- ** }=============================================================
- */
- Table *luaH_new (lua_State *L) {
- GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
- Table *t = gco2t(o);
- t->metatable = NULL;
- t->flags = cast_byte(maskflags); /* table has no metamethod fields */
- t->array = NULL;
- t->alimit = 0;
- setnodevector(L, t, 0);
- return t;
- }
- void luaH_free (lua_State *L, Table *t) {
- freehash(L, t);
- luaM_freearray(L, t->array, luaH_realasize(t));
- luaM_free(L, t);
- }
- static Node *getfreepos (Table *t) {
- if (!isdummy(t)) {
- while (t->lastfree > t->node) {
- t->lastfree--;
- if (keyisnil(t->lastfree))
- return t->lastfree;
- }
- }
- return NULL; /* could not find a free place */
- }
- /*
- ** inserts a new key into a hash table; first, check whether key's main
- ** position is free. If not, check whether colliding node is in its main
- ** position or not: if it is not, move colliding node to an empty place and
- ** put new key in its main position; otherwise (colliding node is in its main
- ** position), new key goes to an empty position.
- */
- TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
- Node *mp;
- TValue aux;
- if (unlikely(ttisnil(key)))
- luaG_runerror(L, "table index is nil");
- else if (ttisfloat(key)) {
- lua_Number f = fltvalue(key);
- lua_Integer k;
- if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */
- setivalue(&aux, k);
- key = &aux; /* insert it as an integer */
- }
- else if (unlikely(luai_numisnan(f)))
- luaG_runerror(L, "table index is NaN");
- }
- mp = mainpositionTV(t, key);
- if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
- Node *othern;
- Node *f = getfreepos(t); /* get a free place */
- if (f == NULL) { /* cannot find a free place? */
- rehash(L, t, key); /* grow table */
- /* whatever called 'newkey' takes care of TM cache */
- return luaH_set(L, t, key); /* insert key into grown table */
- }
- lua_assert(!isdummy(t));
- othern = mainposition(t, keytt(mp), &keyval(mp));
- if (othern != mp) { /* is colliding node out of its main position? */
- /* yes; move colliding node into free position */
- while (othern + gnext(othern) != mp) /* find previous */
- othern += gnext(othern);
- gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
- *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
- if (gnext(mp) != 0) {
- gnext(f) += cast_int(mp - f); /* correct 'next' */
- gnext(mp) = 0; /* now 'mp' is free */
- }
- setempty(gval(mp));
- }
- else { /* colliding node is in its own main position */
- /* new node will go into free position */
- if (gnext(mp) != 0)
- gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
- else lua_assert(gnext(f) == 0);
- gnext(mp) = cast_int(f - mp);
- mp = f;
- }
- }
- setnodekey(L, mp, key);
- luaC_barrierback(L, obj2gco(t), key);
- lua_assert(isempty(gval(mp)));
- return gval(mp);
- }
- /*
- ** Search function for integers. If integer is inside 'alimit', get it
- ** directly from the array part. Otherwise, if 'alimit' is not equal to
- ** the real size of the array, key still can be in the array part. In
- ** this case, try to avoid a call to 'luaH_realasize' when key is just
- ** one more than the limit (so that it can be incremented without
- ** changing the real size of the array).
- */
- const TValue *luaH_getint (Table *t, lua_Integer key) {
- if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */
- return &t->array[key - 1];
- else if (!limitequalsasize(t) && /* key still may be in the array part? */
- (l_castS2U(key) == t->alimit + 1 ||
- l_castS2U(key) - 1u < luaH_realasize(t))) {
- t->alimit = cast_uint(key); /* probably '#t' is here now */
- return &t->array[key - 1];
- }
- else {
- Node *n = hashint(t, key);
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (keyisinteger(n) && keyival(n) == key)
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0) break;
- n += nx;
- }
- }
- return &absentkey;
- }
- }
- /*
- ** search function for short strings
- */
- const TValue *luaH_getshortstr (Table *t, TString *key) {
- Node *n = hashstr(t, key);
- lua_assert(key->tt == LUA_VSHRSTR);
- for (;;) { /* check whether 'key' is somewhere in the chain */
- if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
- return gval(n); /* that's it */
- else {
- int nx = gnext(n);
- if (nx == 0)
- return &absentkey; /* not found */
- n += nx;
- }
- }
- }
- const TValue *luaH_getstr (Table *t, TString *key) {
- if (key->tt == LUA_VSHRSTR)
- return luaH_getshortstr(t, key);
- else { /* for long strings, use generic case */
- TValue ko;
- setsvalue(cast(lua_State *, NULL), &ko, key);
- return getgeneric(t, &ko, 0);
- }
- }
- /*
- ** main search function
- */
- const TValue *luaH_get (Table *t, const TValue *key) {
- switch (ttypetag(key)) {
- case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
- case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
- case LUA_VNIL: return &absentkey;
- case LUA_VNUMFLT: {
- lua_Integer k;
- if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
- return luaH_getint(t, k); /* use specialized version */
- /* else... */
- } /* FALLTHROUGH */
- default:
- return getgeneric(t, key, 0);
- }
- }
- /*
- ** beware: when using this function you probably need to check a GC
- ** barrier and invalidate the TM cache.
- */
- TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
- const TValue *p = luaH_get(t, key);
- if (!isabstkey(p))
- return cast(TValue *, p);
- else return luaH_newkey(L, t, key);
- }
- void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
- const TValue *p = luaH_getint(t, key);
- TValue *cell;
- if (!isabstkey(p))
- cell = cast(TValue *, p);
- else {
- TValue k;
- setivalue(&k, key);
- cell = luaH_newkey(L, t, &k);
- }
- setobj2t(L, cell, value);
- }
- /*
- ** Try to find a boundary in the hash part of table 't'. From the
- ** caller, we know that 'j' is zero or present and that 'j + 1' is
- ** present. We want to find a larger key that is absent from the
- ** table, so that we can do a binary search between the two keys to
- ** find a boundary. We keep doubling 'j' until we get an absent index.
- ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
- ** absent, we are ready for the binary search. ('j', being max integer,
- ** is larger or equal to 'i', but it cannot be equal because it is
- ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
- ** boundary. ('j + 1' cannot be a present integer key because it is
- ** not a valid integer in Lua.)
- */
- static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
- lua_Unsigned i;
- if (j == 0) j++; /* the caller ensures 'j + 1' is present */
- do {
- i = j; /* 'i' is a present index */
- if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
- j *= 2;
- else {
- j = LUA_MAXINTEGER;
- if (isempty(luaH_getint(t, j))) /* t[j] not present? */
- break; /* 'j' now is an absent index */
- else /* weird case */
- return j; /* well, max integer is a boundary... */
- }
- } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */
- /* i < j && t[i] present && t[j] absent */
- while (j - i > 1u) { /* do a binary search between them */
- lua_Unsigned m = (i + j) / 2;
- if (isempty(luaH_getint(t, m))) j = m;
- else i = m;
- }
- return i;
- }
- static unsigned int binsearch (const TValue *array, unsigned int i,
- unsigned int j) {
- while (j - i > 1u) { /* binary search */
- unsigned int m = (i + j) / 2;
- if (isempty(&array[m - 1])) j = m;
- else i = m;
- }
- return i;
- }
- /*
- ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
- ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
- ** and 'maxinteger' if t[maxinteger] is present.)
- ** (In the next explanation, we use Lua indices, that is, with base 1.
- ** The code itself uses base 0 when indexing the array part of the table.)
- ** The code starts with 'limit = t->alimit', a position in the array
- ** part that may be a boundary.
- **
- ** (1) If 't[limit]' is empty, there must be a boundary before it.
- ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
- ** is present. If so, it is a boundary. Otherwise, do a binary search
- ** between 0 and limit to find a boundary. In both cases, try to
- ** use this boundary as the new 'alimit', as a hint for the next call.
- **
- ** (2) If 't[limit]' is not empty and the array has more elements
- ** after 'limit', try to find a boundary there. Again, try first
- ** the special case (which should be quite frequent) where 'limit+1'
- ** is empty, so that 'limit' is a boundary. Otherwise, check the
- ** last element of the array part. If it is empty, there must be a
- ** boundary between the old limit (present) and the last element
- ** (absent), which is found with a binary search. (This boundary always
- ** can be a new limit.)
- **
- ** (3) The last case is when there are no elements in the array part
- ** (limit == 0) or its last element (the new limit) is present.
- ** In this case, must check the hash part. If there is no hash part
- ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call
- ** 'hash_search' to find a boundary in the hash part of the table.
- ** (In those cases, the boundary is not inside the array part, and
- ** therefore cannot be used as a new limit.)
- */
- lua_Unsigned luaH_getn (Table *t) {
- unsigned int limit = t->alimit;
- if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */
- /* there must be a boundary before 'limit' */
- if (limit >= 2 && !isempty(&t->array[limit - 2])) {
- /* 'limit - 1' is a boundary; can it be a new limit? */
- if (ispow2realasize(t) && !ispow2(limit - 1)) {
- t->alimit = limit - 1;
- setnorealasize(t); /* now 'alimit' is not the real size */
- }
- return limit - 1;
- }
- else { /* must search for a boundary in [0, limit] */
- unsigned int boundary = binsearch(t->array, 0, limit);
- /* can this boundary represent the real size of the array? */
- if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
- t->alimit = boundary; /* use it as the new limit */
- setnorealasize(t);
- }
- return boundary;
- }
- }
- /* 'limit' is zero or present in table */
- if (!limitequalsasize(t)) { /* (2)? */
- /* 'limit' > 0 and array has more elements after 'limit' */
- if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */
- return limit; /* this is the boundary */
- /* else, try last element in the array */
- limit = luaH_realasize(t);
- if (isempty(&t->array[limit - 1])) { /* empty? */
- /* there must be a boundary in the array after old limit,
- and it must be a valid new limit */
- unsigned int boundary = binsearch(t->array, t->alimit, limit);
- t->alimit = boundary;
- return boundary;
- }
- /* else, new limit is present in the table; check the hash part */
- }
- /* (3) 'limit' is the last element and either is zero or present in table */
- lua_assert(limit == luaH_realasize(t) &&
- (limit == 0 || !isempty(&t->array[limit - 1])));
- if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
- return limit; /* 'limit + 1' is absent */
- else /* 'limit + 1' is also present */
- return hash_search(t, limit);
- }
- #if defined(LUA_DEBUG)
- /* export these functions for the test library */
- Node *luaH_mainposition (const Table *t, const TValue *key) {
- return mainpositionTV(t, key);
- }
- int luaH_isdummy (const Table *t) { return isdummy(t); }
- #endif
|