// // Copyright (c) 2000-2010 // Joerg Walter, Mathias Koch, David Bellot // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef BOOST_UBLAS_HERMITIAN_H #define BOOST_UBLAS_HERMITIAN_H #include #include // for resize_preserve #include // Iterators based on ideas of Jeremy Siek // Hermitian matrices are square. Thanks to Peter Schmitteckert for spotting this. namespace boost { namespace numeric { namespace ublas { template bool is_hermitian (const M &m) { typedef typename M::size_type size_type; if (m.size1 () != m.size2 ()) return false; size_type size = BOOST_UBLAS_SAME (m.size1 (), m.size2 ()); for (size_type i = 0; i < size; ++ i) { for (size_type j = i; j < size; ++ j) { if (m (i, j) != conj (m (j, i))) return false; } } return true; } #ifdef BOOST_UBLAS_STRICT_HERMITIAN template class hermitian_matrix_element: public container_reference { public: typedef M matrix_type; typedef typename M::size_type size_type; typedef typename M::value_type value_type; typedef const value_type &const_reference; typedef value_type &reference; typedef value_type *pointer; // Construction and destruction BOOST_UBLAS_INLINE hermitian_matrix_element (matrix_type &m, size_type i, size_type j, value_type d): container_reference (m), i_ (i), j_ (j), d_ (d), dirty_ (false) {} BOOST_UBLAS_INLINE ~hermitian_matrix_element () { if (dirty_) (*this) ().insert_element (i_, j_, d_); } // Assignment BOOST_UBLAS_INLINE hermitian_matrix_element &operator = (const hermitian_matrix_element &p) { // Overide the implict copy assignment d_ = p.d_; dirty_ = true; return *this; } template BOOST_UBLAS_INLINE hermitian_matrix_element &operator = (const D &d) { d_ = d; dirty_ = true; return *this; } template BOOST_UBLAS_INLINE hermitian_matrix_element &operator += (const D &d) { d_ += d; dirty_ = true; return *this; } template BOOST_UBLAS_INLINE hermitian_matrix_element &operator -= (const D &d) { d_ -= d; dirty_ = true; return *this; } template BOOST_UBLAS_INLINE hermitian_matrix_element &operator *= (const D &d) { d_ *= d; dirty_ = true; return *this; } template BOOST_UBLAS_INLINE hermitian_matrix_element &operator /= (const D &d) { d_ /= d; dirty_ = true; return *this; } // Comparison template BOOST_UBLAS_INLINE bool operator == (const D &d) const { return d_ == d; } template BOOST_UBLAS_INLINE bool operator != (const D &d) const { return d_ != d; } // Conversion BOOST_UBLAS_INLINE operator const_reference () const { return d_; } // Swapping BOOST_UBLAS_INLINE void swap (hermitian_matrix_element p) { if (this != &p) { dirty_ = true; p.dirty_ = true; std::swap (d_, p.d_); } } BOOST_UBLAS_INLINE friend void swap (hermitian_matrix_element p1, hermitian_matrix_element p2) { p1.swap (p2); } private: size_type i_; size_type j_; value_type d_; bool dirty_; }; template struct type_traits > { typedef typename M::value_type element_type; typedef type_traits > self_type; typedef typename type_traits::value_type value_type; typedef typename type_traits::const_reference const_reference; typedef hermitian_matrix_element reference; typedef typename type_traits::real_type real_type; typedef typename type_traits::precision_type precision_type; static const unsigned plus_complexity = type_traits::plus_complexity; static const unsigned multiplies_complexity = type_traits::multiplies_complexity; static BOOST_UBLAS_INLINE real_type real (const_reference t) { return type_traits::real (t); } static BOOST_UBLAS_INLINE real_type imag (const_reference t) { return type_traits::imag (t); } static BOOST_UBLAS_INLINE value_type conj (const_reference t) { return type_traits::conj (t); } static BOOST_UBLAS_INLINE real_type type_abs (const_reference t) { return type_traits::type_abs (t); } static BOOST_UBLAS_INLINE value_type type_sqrt (const_reference t) { return type_traits::type_sqrt (t); } static BOOST_UBLAS_INLINE real_type norm_1 (const_reference t) { return type_traits::norm_1 (t); } static BOOST_UBLAS_INLINE real_type norm_2 (const_reference t) { return type_traits::norm_2 (t); } static BOOST_UBLAS_INLINE real_type norm_inf (const_reference t) { return type_traits::norm_inf (t); } static BOOST_UBLAS_INLINE bool equals (const_reference t1, const_reference t2) { return type_traits::equals (t1, t2); } }; template struct promote_traits, T2> { typedef typename promote_traits::value_type, T2>::promote_type promote_type; }; template struct promote_traits > { typedef typename promote_traits::value_type>::promote_type promote_type; }; template struct promote_traits, hermitian_matrix_element > { typedef typename promote_traits::value_type, typename hermitian_matrix_element::value_type>::promote_type promote_type; }; #endif /** \brief A hermitian matrix of values of type \c T * * For a \f$(n \times n)\f$-dimensional matrix and \f$ 0 \leq i < n, 0 \leq j < n\f$, every element * \f$m_{i,j}\f$ is mapped to the \f$(i.n + j)\f$-th element of the container for row major orientation * or the \f$(i + j.m)\f$-th element of the container for column major orientation. And * \f$\forall i,j\f$, \f$m_{i,j} = \overline{m_{i,j}}\f$. * * Orientation and storage can also be specified, otherwise a row major and unbounded array are used. * It is \b not required by the storage to initialize elements of the matrix. * Moreover, only the given triangular matrix is stored and the storage of hermitian matrices is packed. * * See http://en.wikipedia.org/wiki/Hermitian_matrix for more details on hermitian matrices. * * \tparam T the type of object stored in the matrix (like double, float, complex, etc...) * \tparam TRI the type of triangular matrix is either \c lower or \c upper. Default is \c lower * \tparam L the storage organization. It is either \c row_major or \c column_major. Default is \c row_major * \tparam A the type of Storage array. Default is \unbounded_array. */ template class hermitian_matrix: public matrix_container > { typedef T &true_reference; typedef T *pointer; typedef TRI triangular_type; typedef L layout_type; typedef hermitian_matrix self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_container::operator (); #endif typedef typename A::size_type size_type; typedef typename A::difference_type difference_type; typedef T value_type; // FIXME no better way to not return the address of a temporary? // typedef const T &const_reference; typedef const T const_reference; #ifndef BOOST_UBLAS_STRICT_HERMITIAN typedef T &reference; #else typedef hermitian_matrix_element reference; #endif typedef A array_type; typedef const matrix_reference const_closure_type; typedef matrix_reference closure_type; typedef vector vector_temporary_type; typedef matrix matrix_temporary_type; // general sub-matrix typedef packed_tag storage_category; typedef typename L::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE hermitian_matrix (): matrix_container (), size_ (0), data_ (0) {} BOOST_UBLAS_INLINE hermitian_matrix (size_type size): matrix_container (), size_ (BOOST_UBLAS_SAME (size, size)), data_ (triangular_type::packed_size (layout_type (), size, size)) { } BOOST_UBLAS_INLINE hermitian_matrix (size_type size1, size_type size2): matrix_container (), size_ (BOOST_UBLAS_SAME (size1, size2)), data_ (triangular_type::packed_size (layout_type (), size1, size2)) { } BOOST_UBLAS_INLINE hermitian_matrix (size_type size, const array_type &data): matrix_container (), size_ (size), data_ (data) {} BOOST_UBLAS_INLINE hermitian_matrix (const hermitian_matrix &m): matrix_container (), size_ (m.size_), data_ (m.data_) {} template BOOST_UBLAS_INLINE hermitian_matrix (const matrix_expression &ae): matrix_container (), size_ (BOOST_UBLAS_SAME (ae ().size1 (), ae ().size2 ())), data_ (triangular_type::packed_size (layout_type (), size_, size_)) { matrix_assign (*this, ae); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return size_; } BOOST_UBLAS_INLINE size_type size2 () const { return size_; } // Storage accessors BOOST_UBLAS_INLINE const array_type &data () const { return data_; } BOOST_UBLAS_INLINE array_type &data () { return data_; } // Resizing BOOST_UBLAS_INLINE void resize (size_type size, bool preserve = true) { if (preserve) { self_type temporary (size, size); detail::matrix_resize_preserve (*this, temporary); } else { data ().resize (triangular_type::packed_size (layout_type (), size, size)); size_ = size; } } BOOST_UBLAS_INLINE void resize (size_type size1, size_type size2, bool preserve = true) { resize (BOOST_UBLAS_SAME (size1, size2), preserve); } BOOST_UBLAS_INLINE void resize_packed_preserve (size_type size) { size_ = BOOST_UBLAS_SAME (size, size); data ().resize (triangular_type::packed_size (layout_type (), size_, size_), value_type ()); } // Element access BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size_, bad_index ()); BOOST_UBLAS_CHECK (j < size_, bad_index ()); // if (i == j) // return type_traits::real (data () [triangular_type::element (layout_type (), i, size_, i, size_)]); // else if (triangular_type::other (i, j)) return data () [triangular_type::element (layout_type (), i, size_, j, size_)]; else return type_traits::conj (data () [triangular_type::element (layout_type (), j, size_, i, size_)]); } BOOST_UBLAS_INLINE true_reference at_element (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); BOOST_UBLAS_CHECK (j < size_, bad_index ()); BOOST_UBLAS_CHECK (triangular_type::other (i, j), bad_index ()); return data () [triangular_type::element (layout_type (), i, size_, j, size_)]; } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { #ifndef BOOST_UBLAS_STRICT_HERMITIAN if (!triangular_type::other (i, j)) { bad_index ().raise (); // NEVER reached } return at_element (i, j); #else if (triangular_type::other (i, j)) return reference (*this, i, j, data () [triangular_type::element (layout_type (), i, size_, j, size_)]); else return reference (*this, i, j, type_traits::conj (data () [triangular_type::element (layout_type (), j, size_, i, size_)])); #endif } // Element assignemnt BOOST_UBLAS_INLINE true_reference insert_element (size_type i, size_type j, const_reference t) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); BOOST_UBLAS_CHECK (j < size_, bad_index ()); if (triangular_type::other (i, j)) { return (data () [triangular_type::element (layout_type (), i, size_, j, size_)] = t); } else { return (data () [triangular_type::element (layout_type (), j, size_, i, size_)] = type_traits::conj (t)); } } BOOST_UBLAS_INLINE void erase_element (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size_, bad_index ()); BOOST_UBLAS_CHECK (j < size_, bad_index ()); data () [triangular_type::element (layout_type (), i, size_, j, size_)] = value_type/*zero*/(); } // Zeroing BOOST_UBLAS_INLINE void clear () { std::fill (data ().begin (), data ().end (), value_type/*zero*/()); } // Assignment BOOST_UBLAS_INLINE hermitian_matrix &operator = (const hermitian_matrix &m) { size_ = m.size_; data () = m.data (); return *this; } BOOST_UBLAS_INLINE hermitian_matrix &assign_temporary (hermitian_matrix &m) { swap (m); return *this; } template BOOST_UBLAS_INLINE hermitian_matrix &operator = (const matrix_expression &ae) { self_type temporary (ae); return assign_temporary (temporary); } template BOOST_UBLAS_INLINE hermitian_matrix &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE hermitian_matrix& operator += (const matrix_expression &ae) { self_type temporary (*this + ae); return assign_temporary (temporary); } template BOOST_UBLAS_INLINE hermitian_matrix &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE hermitian_matrix& operator -= (const matrix_expression &ae) { self_type temporary (*this - ae); return assign_temporary (temporary); } template BOOST_UBLAS_INLINE hermitian_matrix &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE hermitian_matrix& operator *= (const AT &at) { // Multiplication is only allowed for real scalars, // otherwise the resulting matrix isn't hermitian. // Thanks to Peter Schmitteckert for spotting this. BOOST_UBLAS_CHECK (type_traits::imag (at) == 0, non_real ()); matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE hermitian_matrix& operator /= (const AT &at) { // Multiplication is only allowed for real scalars, // otherwise the resulting matrix isn't hermitian. // Thanks to Peter Schmitteckert for spotting this. BOOST_UBLAS_CHECK (type_traits::imag (at) == 0, non_real ()); matrix_assign_scalar (*this, at); return *this; } // Swapping BOOST_UBLAS_INLINE void swap (hermitian_matrix &m) { if (this != &m) { std::swap (size_, m.size_); data ().swap (m.data ()); } } BOOST_UBLAS_INLINE friend void swap (hermitian_matrix &m1, hermitian_matrix &m2) { m1.swap (m2); } // Iterator types #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1 iterator1; typedef indexed_iterator2 iterator2; typedef indexed_const_iterator1 const_iterator1; typedef indexed_const_iterator2 const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int /* rank */, size_type i, size_type j) const { return const_iterator1 (*this, i, j); } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) i = triangular_type::mutable_restrict1 (i, j, size1(), size2()); if (rank == 0) i = triangular_type::global_mutable_restrict1 (i, size1(), j, size2()); return iterator1 (*this, i, j); } BOOST_UBLAS_INLINE const_iterator2 find2 (int /* rank */, size_type i, size_type j) const { return const_iterator2 (*this, i, j); } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) j = triangular_type::mutable_restrict2 (i, j, size1(), size2()); if (rank == 0) j = triangular_type::global_mutable_restrict2 (i, size1(), j, size2()); return iterator2 (*this, i, j); } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public random_access_iterator_base { public: typedef typename hermitian_matrix::value_type value_type; typedef typename hermitian_matrix::difference_type difference_type; typedef typename hermitian_matrix::const_reference reference; typedef const typename hermitian_matrix::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, size_type it1, size_type it2): container_const_reference (m), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return (*this) ().find2 (1, it1_, 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return (*this) ().find2 (1, it1_, (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: size_type it1_; size_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size_, 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public random_access_iterator_base { public: typedef typename hermitian_matrix::value_type value_type; typedef typename hermitian_matrix::difference_type difference_type; typedef typename hermitian_matrix::true_reference reference; typedef typename hermitian_matrix::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, size_type it1, size_type it2): container_reference (m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return (*this) ().at_element (it1_, it2_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return (*this) ().find2 (1, it1_, 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return (*this) ().find2 (1, it1_, (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ()); return it1_ < it.it1_; } private: size_type it1_; size_type it2_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size_, 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public random_access_iterator_base { public: typedef typename hermitian_matrix::value_type value_type; typedef typename hermitian_matrix::difference_type difference_type; typedef typename hermitian_matrix::const_reference reference; typedef const typename hermitian_matrix::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, size_type it1, size_type it2): container_const_reference (m), it1_ (it1), it2_ (it2) {} BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), it1_ (it.it1_), it2_ (it.it2_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { return (*this) () (it1_, it2_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return (*this) ().find1 (1, 0, it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: size_type it1_; size_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size_); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public random_access_iterator_base { public: typedef typename hermitian_matrix::value_type value_type; typedef typename hermitian_matrix::difference_type difference_type; typedef typename hermitian_matrix::true_reference reference; typedef typename hermitian_matrix::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), it1_ (), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, size_type it1, size_type it2): container_reference (m), it1_ (it1), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return (*this) ().at_element (it1_, it2_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return (*this) ().find1 (1, 0, it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), it2_); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_; } BOOST_UBLAS_INLINE size_type index2 () const { return it2_; } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it1_ = it.it1_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ()); return it2_ < it.it2_; } private: size_type it1_; size_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size_); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1 (); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2(); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: size_type size_; array_type data_; }; /** \brief A Hermitian matrix adaptator: convert a any matrix into a Hermitian matrix expression * * For a \f$(m\times n)\f$-dimensional matrix, the \c hermitian_adaptor will provide a hermitian matrix. * Storage and location are based on those of the underlying matrix. This is important because * a \c hermitian_adaptor does not copy the matrix data to a new place. Therefore, modifying values * in a \c hermitian_adaptor matrix will also modify the underlying matrix too. * * \tparam M the type of matrix used to generate a hermitian matrix */ template class hermitian_adaptor: public matrix_expression > { typedef hermitian_adaptor self_type; typedef typename M::value_type &true_reference; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using matrix_expression::operator (); #endif typedef const M const_matrix_type; typedef M matrix_type; typedef TRI triangular_type; typedef typename M::size_type size_type; typedef typename M::difference_type difference_type; typedef typename M::value_type value_type; typedef typename M::value_type const_reference; #ifndef BOOST_UBLAS_STRICT_HERMITIAN typedef typename boost::mpl::if_, typename M::value_type, typename M::reference>::type reference; #else typedef typename boost::mpl::if_, typename M::value_type, hermitian_matrix_element >::type reference; #endif typedef typename boost::mpl::if_, typename M::const_closure_type, typename M::closure_type>::type matrix_closure_type; typedef const self_type const_closure_type; typedef self_type closure_type; // Replaced by _temporary_traits to avoid type requirements on M //typedef typename M::vector_temporary_type vector_temporary_type; //typedef typename M::matrix_temporary_type matrix_temporary_type; typedef typename storage_restrict_traits::storage_category storage_category; typedef typename M::orientation_category orientation_category; // Construction and destruction BOOST_UBLAS_INLINE hermitian_adaptor (matrix_type &data): matrix_expression (), data_ (data) { BOOST_UBLAS_CHECK (data_.size1 () == data_.size2 (), bad_size ()); } BOOST_UBLAS_INLINE hermitian_adaptor (const hermitian_adaptor &m): matrix_expression (), data_ (m.data_) { BOOST_UBLAS_CHECK (data_.size1 () == data_.size2 (), bad_size ()); } // Accessors BOOST_UBLAS_INLINE size_type size1 () const { return data_.size1 (); } BOOST_UBLAS_INLINE size_type size2 () const { return data_.size2 (); } // Storage accessors BOOST_UBLAS_INLINE const matrix_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE matrix_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i, size_type j) const { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); // if (i == j) // return type_traits::real (data () (i, i)); // else if (triangular_type::other (i, j)) return data () (i, j); else return type_traits::conj (data () (j, i)); } BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); #ifndef BOOST_UBLAS_STRICT_HERMITIAN if (triangular_type::other (i, j)) return data () (i, j); else { external_logic ().raise (); return conj_ = type_traits::conj (data () (j, i)); } #else if (triangular_type::other (i, j)) return reference (*this, i, j, data () (i, j)); else return reference (*this, i, j, type_traits::conj (data () (j, i))); #endif } BOOST_UBLAS_INLINE true_reference insert_element (size_type i, size_type j, value_type t) { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); // if (i == j) // data () (i, i) = type_traits::real (t); // else if (triangular_type::other (i, j)) return data () (i, j) = t; else return data () (j, i) = type_traits::conj (t); } #else BOOST_UBLAS_INLINE reference operator () (size_type i, size_type j) { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); #ifndef BOOST_UBLAS_STRICT_HERMITIAN if (triangular_type::other (i, j)) return data () (i, j); else { external_logic ().raise (); return conj_ = type_traits::conj (data () (j, i)); } #else if (triangular_type::other (i, j)) return reference (*this, i, j, data () (i, j)); else return reference (*this, i, j, type_traits::conj (data () (j, i))); #endif } BOOST_UBLAS_INLINE true_reference insert_element (size_type i, size_type j, value_type t) { BOOST_UBLAS_CHECK (i < size1 (), bad_index ()); BOOST_UBLAS_CHECK (j < size2 (), bad_index ()); // if (i == j) // data () (i, i) = type_traits::real (t); // else if (triangular_type::other (i, j)) return data () (i, j) = t; else return data () (j, i) = type_traits::conj (t); } #endif // Assignment BOOST_UBLAS_INLINE hermitian_adaptor &operator = (const hermitian_adaptor &m) { matrix_assign (*this, m); return *this; } BOOST_UBLAS_INLINE hermitian_adaptor &assign_temporary (hermitian_adaptor &m) { *this = m; return *this; } template BOOST_UBLAS_INLINE hermitian_adaptor &operator = (const matrix_expression &ae) { matrix_assign (*this, matrix (ae)); return *this; } template BOOST_UBLAS_INLINE hermitian_adaptor &assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE hermitian_adaptor& operator += (const matrix_expression &ae) { matrix_assign (*this, matrix (*this + ae)); return *this; } template BOOST_UBLAS_INLINE hermitian_adaptor &plus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE hermitian_adaptor& operator -= (const matrix_expression &ae) { matrix_assign (*this, matrix (*this - ae)); return *this; } template BOOST_UBLAS_INLINE hermitian_adaptor &minus_assign (const matrix_expression &ae) { matrix_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE hermitian_adaptor& operator *= (const AT &at) { // Multiplication is only allowed for real scalars, // otherwise the resulting matrix isn't hermitian. // Thanks to Peter Schmitteckert for spotting this. BOOST_UBLAS_CHECK (type_traits::imag (at) == 0, non_real ()); matrix_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE hermitian_adaptor& operator /= (const AT &at) { // Multiplication is only allowed for real scalars, // otherwise the resulting matrix isn't hermitian. // Thanks to Peter Schmitteckert for spotting this. BOOST_UBLAS_CHECK (type_traits::imag (at) == 0, non_real ()); matrix_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const hermitian_adaptor &ha) const { return (*this).data ().same_closure (ha.data ()); } // Swapping BOOST_UBLAS_INLINE void swap (hermitian_adaptor &m) { if (this != &m) matrix_swap (*this, m); } BOOST_UBLAS_INLINE friend void swap (hermitian_adaptor &m1, hermitian_adaptor &m2) { m1.swap (m2); } // Iterator types private: // Use matrix iterator typedef typename M::const_iterator1 const_subiterator1_type; typedef typename boost::mpl::if_, typename M::const_iterator1, typename M::iterator1>::type subiterator1_type; typedef typename M::const_iterator2 const_subiterator2_type; typedef typename boost::mpl::if_, typename M::const_iterator2, typename M::iterator2>::type subiterator2_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator1 iterator1; typedef indexed_iterator2 iterator2; typedef indexed_const_iterator1 const_iterator1; typedef indexed_const_iterator2 const_iterator2; #else class const_iterator1; class iterator1; class const_iterator2; class iterator2; #endif typedef reverse_iterator_base1 const_reverse_iterator1; typedef reverse_iterator_base1 reverse_iterator1; typedef reverse_iterator_base2 const_reverse_iterator2; typedef reverse_iterator_base2 reverse_iterator2; // Element lookup BOOST_UBLAS_INLINE const_iterator1 find1 (int rank, size_type i, size_type j) const { if (triangular_type::other (i, j)) { if (triangular_type::other (size1 (), j)) { return const_iterator1 (*this, 0, 0, data ().find1 (rank, i, j), data ().find1 (rank, size1 (), j), data ().find2 (rank, size2 (), size1 ()), data ().find2 (rank, size2 (), size1 ())); } else { return const_iterator1 (*this, 0, 1, data ().find1 (rank, i, j), data ().find1 (rank, j, j), data ().find2 (rank, j, j), data ().find2 (rank, j, size1 ())); } } else { if (triangular_type::other (size1 (), j)) { return const_iterator1 (*this, 1, 0, data ().find1 (rank, j, j), data ().find1 (rank, size1 (), j), data ().find2 (rank, j, i), data ().find2 (rank, j, j)); } else { return const_iterator1 (*this, 1, 1, data ().find1 (rank, size1 (), size2 ()), data ().find1 (rank, size1 (), size2 ()), data ().find2 (rank, j, i), data ().find2 (rank, j, size1 ())); } } } BOOST_UBLAS_INLINE iterator1 find1 (int rank, size_type i, size_type j) { if (rank == 1) i = triangular_type::mutable_restrict1 (i, j, size1(), size2()); if (rank == 0) i = triangular_type::global_mutable_restrict1 (i, size1(), j, size2()); return iterator1 (*this, data ().find1 (rank, i, j)); } BOOST_UBLAS_INLINE const_iterator2 find2 (int rank, size_type i, size_type j) const { if (triangular_type::other (i, j)) { if (triangular_type::other (i, size2 ())) { return const_iterator2 (*this, 1, 1, data ().find1 (rank, size2 (), size1 ()), data ().find1 (rank, size2 (), size1 ()), data ().find2 (rank, i, j), data ().find2 (rank, i, size2 ())); } else { return const_iterator2 (*this, 1, 0, data ().find1 (rank, i, i), data ().find1 (rank, size2 (), i), data ().find2 (rank, i, j), data ().find2 (rank, i, i)); } } else { if (triangular_type::other (i, size2 ())) { return const_iterator2 (*this, 0, 1, data ().find1 (rank, j, i), data ().find1 (rank, i, i), data ().find2 (rank, i, i), data ().find2 (rank, i, size2 ())); } else { return const_iterator2 (*this, 0, 0, data ().find1 (rank, j, i), data ().find1 (rank, size2 (), i), data ().find2 (rank, size1 (), size2 ()), data ().find2 (rank, size2 (), size2 ())); } } } BOOST_UBLAS_INLINE iterator2 find2 (int rank, size_type i, size_type j) { if (rank == 1) j = triangular_type::mutable_restrict2 (i, j, size1(), size2()); if (rank == 0) j = triangular_type::global_mutable_restrict2 (i, size1(), j, size2()); return iterator2 (*this, data ().find2 (rank, i, j)); } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator1: public container_const_reference, public random_access_iterator_base::iterator_category, const_iterator1, value_type> { public: typedef typename const_subiterator1_type::value_type value_type; typedef typename const_subiterator1_type::difference_type difference_type; // FIXME no better way to not return the address of a temporary? // typedef typename const_subiterator1_type::reference reference; typedef typename const_subiterator1_type::value_type reference; typedef typename const_subiterator1_type::pointer pointer; typedef const_iterator2 dual_iterator_type; typedef const_reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator1 (): container_const_reference (), begin_ (-1), end_ (-1), current_ (-1), it1_begin_ (), it1_end_ (), it1_ (), it2_begin_ (), it2_end_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator1 (const self_type &m, int begin, int end, const const_subiterator1_type &it1_begin, const const_subiterator1_type &it1_end, const const_subiterator2_type &it2_begin, const const_subiterator2_type &it2_end): container_const_reference (m), begin_ (begin), end_ (end), current_ (begin), it1_begin_ (it1_begin), it1_end_ (it1_end), it1_ (it1_begin_), it2_begin_ (it2_begin), it2_end_ (it2_end), it2_ (it2_begin_) { if (current_ == 0 && it1_ == it1_end_) current_ = 1; if (current_ == 1 && it2_ == it2_end_) current_ = 0; if ((current_ == 0 && it1_ == it1_end_) || (current_ == 1 && it2_ == it2_end_)) current_ = end_; BOOST_UBLAS_CHECK (current_ == end_ || (current_ == 0 && it1_ != it1_end_) || (current_ == 1 && it2_ != it2_end_), internal_logic ()); } // FIXME cannot compile // iterator1 does not have these members! BOOST_UBLAS_INLINE const_iterator1 (const iterator1 &it): container_const_reference (it ()), begin_ (it.begin_), end_ (it.end_), current_ (it.current_), it1_begin_ (it.it1_begin_), it1_end_ (it.it1_end_), it1_ (it.it1_), it2_begin_ (it.it2_begin_), it2_end_ (it.it2_end_), it2_ (it.it2_) { BOOST_UBLAS_CHECK (current_ == end_ || (current_ == 0 && it1_ != it1_end_) || (current_ == 1 && it2_ != it2_end_), internal_logic ()); } // Arithmetic BOOST_UBLAS_INLINE const_iterator1 &operator ++ () { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); ++ it1_; if (it1_ == it1_end_ && end_ == 1) { it2_ = it2_begin_; current_ = 1; } } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); ++ it2_; if (it2_ == it2_end_ && end_ == 0) { it1_ = it1_begin_; current_ = 0; } } return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -- () { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { if (it1_ == it1_begin_ && begin_ == 1) { it2_ = it2_end_; BOOST_UBLAS_CHECK (it2_ != it2_begin_, internal_logic ()); -- it2_; current_ = 1; } else { -- it1_; } } else /* if (current_ == 1) */ { if (it2_ == it2_begin_ && begin_ == 0) { it1_ = it1_end_; BOOST_UBLAS_CHECK (it1_ != it1_begin_, internal_logic ()); -- it1_; current_ = 0; } else { -- it2_; } } return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator += (difference_type n) { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { size_type d = (std::min) (n, it1_end_ - it1_); it1_ += d; n -= d; if (n > 0 || (end_ == 1 && it1_ == it1_end_)) { BOOST_UBLAS_CHECK (end_ == 1, external_logic ()); d = (std::min) (n, it2_end_ - it2_begin_); it2_ = it2_begin_ + d; n -= d; current_ = 1; } } else /* if (current_ == 1) */ { size_type d = (std::min) (n, it2_end_ - it2_); it2_ += d; n -= d; if (n > 0 || (end_ == 0 && it2_ == it2_end_)) { BOOST_UBLAS_CHECK (end_ == 0, external_logic ()); d = (std::min) (n, it1_end_ - it1_begin_); it1_ = it1_begin_ + d; n -= d; current_ = 0; } } BOOST_UBLAS_CHECK (n == 0, external_logic ()); return *this; } BOOST_UBLAS_INLINE const_iterator1 &operator -= (difference_type n) { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { size_type d = (std::min) (n, it1_ - it1_begin_); it1_ -= d; n -= d; if (n > 0) { BOOST_UBLAS_CHECK (end_ == 1, external_logic ()); d = (std::min) (n, it2_end_ - it2_begin_); it2_ = it2_end_ - d; n -= d; current_ = 1; } } else /* if (current_ == 1) */ { size_type d = (std::min) (n, it2_ - it2_begin_); it2_ -= d; n -= d; if (n > 0) { BOOST_UBLAS_CHECK (end_ == 0, external_logic ()); d = (std::min) (n, it1_end_ - it1_begin_); it1_ = it1_end_ - d; n -= d; current_ = 0; } } BOOST_UBLAS_CHECK (n == 0, external_logic ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); BOOST_UBLAS_CHECK (it.current_ == 0 || it.current_ == 1, internal_logic ()); BOOST_UBLAS_CHECK (/* begin_ == it.begin_ && */ end_ == it.end_, internal_logic ()); if (current_ == 0 && it.current_ == 0) { return it1_ - it.it1_; } else if (current_ == 0 && it.current_ == 1) { if (end_ == 1 && it.end_ == 1) { return (it1_ - it.it1_end_) + (it.it2_begin_ - it.it2_); } else /* if (end_ == 0 && it.end_ == 0) */ { return (it1_ - it.it1_begin_) + (it.it2_end_ - it.it2_); } } else if (current_ == 1 && it.current_ == 0) { if (end_ == 1 && it.end_ == 1) { return (it2_ - it.it2_begin_) + (it.it1_end_ - it.it1_); } else /* if (end_ == 0 && it.end_ == 0) */ { return (it2_ - it.it2_end_) + (it.it1_begin_ - it.it1_); } } else /* if (current_ == 1 && it.current_ == 1) */ { return it2_ - it.it2_; } } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); if (triangular_type::other (index1 (), index2 ())) return *it1_; else return type_traits::conj (*it1_); } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); if (triangular_type::other (index1 (), index2 ())) return *it2_; else return type_traits::conj (*it2_); } } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 begin () const { return (*this) ().find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 end () const { return (*this) ().find2 (1, index1 (), (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator2 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rbegin () const { return const_reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 rend () const { return const_reverse_iterator2 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator2 crend () const { return rend (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); return it1_.index1 (); } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); return it2_.index2 (); } } BOOST_UBLAS_INLINE size_type index2 () const { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); return it1_.index2 (); } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); return it2_.index1 (); } } // Assignment BOOST_UBLAS_INLINE const_iterator1 &operator = (const const_iterator1 &it) { container_const_reference::assign (&it ()); begin_ = it.begin_; end_ = it.end_; current_ = it.current_; it1_begin_ = it.it1_begin_; it1_end_ = it.it1_end_; it1_ = it.it1_; it2_begin_ = it.it2_begin_; it2_end_ = it.it2_end_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); BOOST_UBLAS_CHECK (it.current_ == 0 || it.current_ == 1, internal_logic ()); BOOST_UBLAS_CHECK (/* begin_ == it.begin_ && */ end_ == it.end_, internal_logic ()); return (current_ == 0 && it.current_ == 0 && it1_ == it.it1_) || (current_ == 1 && it.current_ == 1 && it2_ == it.it2_); } BOOST_UBLAS_INLINE bool operator < (const const_iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it - *this > 0; } private: int begin_; int end_; int current_; const_subiterator1_type it1_begin_; const_subiterator1_type it1_end_; const_subiterator1_type it1_; const_subiterator2_type it2_begin_; const_subiterator2_type it2_end_; const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator1 begin1 () const { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator1 cbegin1 () const { return begin1 (); } BOOST_UBLAS_INLINE const_iterator1 end1 () const { return find1 (0, size1 (), 0); } BOOST_UBLAS_INLINE const_iterator1 cend1 () const { return end1 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator1: public container_reference, public random_access_iterator_base::iterator_category, iterator1, value_type> { public: typedef typename subiterator1_type::value_type value_type; typedef typename subiterator1_type::difference_type difference_type; typedef typename subiterator1_type::reference reference; typedef typename subiterator1_type::pointer pointer; typedef iterator2 dual_iterator_type; typedef reverse_iterator2 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator1 (): container_reference (), it1_ () {} BOOST_UBLAS_INLINE iterator1 (self_type &m, const subiterator1_type &it1): container_reference (m), it1_ (it1) {} // Arithmetic BOOST_UBLAS_INLINE iterator1 &operator ++ () { ++ it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -- () { -- it1_; return *this; } BOOST_UBLAS_INLINE iterator1 &operator += (difference_type n) { it1_ += n; return *this; } BOOST_UBLAS_INLINE iterator1 &operator -= (difference_type n) { it1_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ - it.it1_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return *it1_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 begin () const { return (*this) ().find2 (1, index1 (), 0); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator2 end () const { return (*this) ().find2 (1, index1 (), (*this) ().size2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rbegin () const { return reverse_iterator2 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator2 rend () const { return reverse_iterator2 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it1_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it1_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator1 &operator = (const iterator1 &it) { container_reference::assign (&it ()); it1_ = it.it1_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ == it.it1_; } BOOST_UBLAS_INLINE bool operator < (const iterator1 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it1_ < it.it1_; } private: subiterator1_type it1_; friend class const_iterator1; }; #endif BOOST_UBLAS_INLINE iterator1 begin1 () { return find1 (0, 0, 0); } BOOST_UBLAS_INLINE iterator1 end1 () { return find1 (0, size1 (), 0); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator2: public container_const_reference, public random_access_iterator_base::iterator_category, const_iterator2, value_type> { public: typedef typename const_subiterator2_type::value_type value_type; typedef typename const_subiterator2_type::difference_type difference_type; // FIXME no better way to not return the address of a temporary? // typedef typename const_subiterator2_type::reference reference; typedef typename const_subiterator2_type::value_type reference; typedef typename const_subiterator2_type::pointer pointer; typedef const_iterator1 dual_iterator_type; typedef const_reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE const_iterator2 (): container_const_reference (), begin_ (-1), end_ (-1), current_ (-1), it1_begin_ (), it1_end_ (), it1_ (), it2_begin_ (), it2_end_ (), it2_ () {} BOOST_UBLAS_INLINE const_iterator2 (const self_type &m, int begin, int end, const const_subiterator1_type &it1_begin, const const_subiterator1_type &it1_end, const const_subiterator2_type &it2_begin, const const_subiterator2_type &it2_end): container_const_reference (m), begin_ (begin), end_ (end), current_ (begin), it1_begin_ (it1_begin), it1_end_ (it1_end), it1_ (it1_begin_), it2_begin_ (it2_begin), it2_end_ (it2_end), it2_ (it2_begin_) { if (current_ == 0 && it1_ == it1_end_) current_ = 1; if (current_ == 1 && it2_ == it2_end_) current_ = 0; if ((current_ == 0 && it1_ == it1_end_) || (current_ == 1 && it2_ == it2_end_)) current_ = end_; BOOST_UBLAS_CHECK (current_ == end_ || (current_ == 0 && it1_ != it1_end_) || (current_ == 1 && it2_ != it2_end_), internal_logic ()); } // FIXME cannot compiler // iterator2 does not have these members! BOOST_UBLAS_INLINE const_iterator2 (const iterator2 &it): container_const_reference (it ()), begin_ (it.begin_), end_ (it.end_), current_ (it.current_), it1_begin_ (it.it1_begin_), it1_end_ (it.it1_end_), it1_ (it.it1_), it2_begin_ (it.it2_begin_), it2_end_ (it.it2_end_), it2_ (it.it2_) { BOOST_UBLAS_CHECK (current_ == end_ || (current_ == 0 && it1_ != it1_end_) || (current_ == 1 && it2_ != it2_end_), internal_logic ()); } // Arithmetic BOOST_UBLAS_INLINE const_iterator2 &operator ++ () { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); ++ it1_; if (it1_ == it1_end_ && end_ == 1) { it2_ = it2_begin_; current_ = 1; } } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); ++ it2_; if (it2_ == it2_end_ && end_ == 0) { it1_ = it1_begin_; current_ = 0; } } return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -- () { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { if (it1_ == it1_begin_ && begin_ == 1) { it2_ = it2_end_; BOOST_UBLAS_CHECK (it2_ != it2_begin_, internal_logic ()); -- it2_; current_ = 1; } else { -- it1_; } } else /* if (current_ == 1) */ { if (it2_ == it2_begin_ && begin_ == 0) { it1_ = it1_end_; BOOST_UBLAS_CHECK (it1_ != it1_begin_, internal_logic ()); -- it1_; current_ = 0; } else { -- it2_; } } return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator += (difference_type n) { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { size_type d = (std::min) (n, it1_end_ - it1_); it1_ += d; n -= d; if (n > 0 || (end_ == 1 && it1_ == it1_end_)) { BOOST_UBLAS_CHECK (end_ == 1, external_logic ()); d = (std::min) (n, it2_end_ - it2_begin_); it2_ = it2_begin_ + d; n -= d; current_ = 1; } } else /* if (current_ == 1) */ { size_type d = (std::min) (n, it2_end_ - it2_); it2_ += d; n -= d; if (n > 0 || (end_ == 0 && it2_ == it2_end_)) { BOOST_UBLAS_CHECK (end_ == 0, external_logic ()); d = (std::min) (n, it1_end_ - it1_begin_); it1_ = it1_begin_ + d; n -= d; current_ = 0; } } BOOST_UBLAS_CHECK (n == 0, external_logic ()); return *this; } BOOST_UBLAS_INLINE const_iterator2 &operator -= (difference_type n) { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { size_type d = (std::min) (n, it1_ - it1_begin_); it1_ -= d; n -= d; if (n > 0) { BOOST_UBLAS_CHECK (end_ == 1, external_logic ()); d = (std::min) (n, it2_end_ - it2_begin_); it2_ = it2_end_ - d; n -= d; current_ = 1; } } else /* if (current_ == 1) */ { size_type d = (std::min) (n, it2_ - it2_begin_); it2_ -= d; n -= d; if (n > 0) { BOOST_UBLAS_CHECK (end_ == 0, external_logic ()); d = (std::min) (n, it1_end_ - it1_begin_); it1_ = it1_end_ - d; n -= d; current_ = 0; } } BOOST_UBLAS_CHECK (n == 0, external_logic ()); return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); BOOST_UBLAS_CHECK (it.current_ == 0 || it.current_ == 1, internal_logic ()); BOOST_UBLAS_CHECK (/* begin_ == it.begin_ && */ end_ == it.end_, internal_logic ()); if (current_ == 0 && it.current_ == 0) { return it1_ - it.it1_; } else if (current_ == 0 && it.current_ == 1) { if (end_ == 1 && it.end_ == 1) { return (it1_ - it.it1_end_) + (it.it2_begin_ - it.it2_); } else /* if (end_ == 0 && it.end_ == 0) */ { return (it1_ - it.it1_begin_) + (it.it2_end_ - it.it2_); } } else if (current_ == 1 && it.current_ == 0) { if (end_ == 1 && it.end_ == 1) { return (it2_ - it.it2_begin_) + (it.it1_end_ - it.it1_); } else /* if (end_ == 0 && it.end_ == 0) */ { return (it2_ - it.it2_end_) + (it.it1_begin_ - it.it1_); } } else /* if (current_ == 1 && it.current_ == 1) */ { return it2_ - it.it2_; } } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); if (triangular_type::other (index1 (), index2 ())) return *it1_; else return type_traits::conj (*it1_); } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); if (triangular_type::other (index1 (), index2 ())) return *it2_; else return type_traits::conj (*it2_); } } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 begin () const { return (*this) ().find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cbegin () const { return begin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_iterator1 cend () const { return end (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rbegin () const { return const_reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crbegin () const { return rbegin (); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 rend () const { return const_reverse_iterator1 (begin ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif const_reverse_iterator1 crend () const { return end (); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); return it1_.index2 (); } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); return it2_.index1 (); } } BOOST_UBLAS_INLINE size_type index2 () const { BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); if (current_ == 0) { BOOST_UBLAS_CHECK (it1_ != it1_end_, internal_logic ()); return it1_.index1 (); } else /* if (current_ == 1) */ { BOOST_UBLAS_CHECK (it2_ != it2_end_, internal_logic ()); return it2_.index2 (); } } // Assignment BOOST_UBLAS_INLINE const_iterator2 &operator = (const const_iterator2 &it) { container_const_reference::assign (&it ()); begin_ = it.begin_; end_ = it.end_; current_ = it.current_; it1_begin_ = it.it1_begin_; it1_end_ = it.it1_end_; it1_ = it.it1_; it2_begin_ = it.it2_begin_; it2_end_ = it.it2_end_; it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); BOOST_UBLAS_CHECK (current_ == 0 || current_ == 1, internal_logic ()); BOOST_UBLAS_CHECK (it.current_ == 0 || it.current_ == 1, internal_logic ()); BOOST_UBLAS_CHECK (/* begin_ == it.begin_ && */ end_ == it.end_, internal_logic ()); return (current_ == 0 && it.current_ == 0 && it1_ == it.it1_) || (current_ == 1 && it.current_ == 1 && it2_ == it.it2_); } BOOST_UBLAS_INLINE bool operator < (const const_iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it - *this > 0; } private: int begin_; int end_; int current_; const_subiterator1_type it1_begin_; const_subiterator1_type it1_end_; const_subiterator1_type it1_; const_subiterator2_type it2_begin_; const_subiterator2_type it2_end_; const_subiterator2_type it2_; }; #endif BOOST_UBLAS_INLINE const_iterator2 begin2 () const { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE const_iterator2 cbegin2 () const { return begin2 (); } BOOST_UBLAS_INLINE const_iterator2 end2 () const { return find2 (0, 0, size2 ()); } BOOST_UBLAS_INLINE const_iterator2 cend2 () const { return end2 (); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator2: public container_reference, public random_access_iterator_base::iterator_category, iterator2, value_type> { public: typedef typename subiterator2_type::value_type value_type; typedef typename subiterator2_type::difference_type difference_type; typedef typename subiterator2_type::reference reference; typedef typename subiterator2_type::pointer pointer; typedef iterator1 dual_iterator_type; typedef reverse_iterator1 dual_reverse_iterator_type; // Construction and destruction BOOST_UBLAS_INLINE iterator2 (): container_reference (), it2_ () {} BOOST_UBLAS_INLINE iterator2 (self_type &m, const subiterator2_type &it2): container_reference (m), it2_ (it2) {} // Arithmetic BOOST_UBLAS_INLINE iterator2 &operator ++ () { ++ it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -- () { -- it2_; return *this; } BOOST_UBLAS_INLINE iterator2 &operator += (difference_type n) { it2_ += n; return *this; } BOOST_UBLAS_INLINE iterator2 &operator -= (difference_type n) { it2_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ - it.it2_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { return *it2_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 begin () const { return (*this) ().find1 (1, 0, index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif iterator1 end () const { return (*this) ().find1 (1, (*this) ().size1 (), index2 ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rbegin () const { return reverse_iterator1 (end ()); } BOOST_UBLAS_INLINE #ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION typename self_type:: #endif reverse_iterator1 rend () const { return reverse_iterator1 (begin ()); } #endif // Indices BOOST_UBLAS_INLINE size_type index1 () const { return it2_.index1 (); } BOOST_UBLAS_INLINE size_type index2 () const { return it2_.index2 (); } // Assignment BOOST_UBLAS_INLINE iterator2 &operator = (const iterator2 &it) { container_reference::assign (&it ()); it2_ = it.it2_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ == it.it2_; } BOOST_UBLAS_INLINE bool operator < (const iterator2 &it) const { BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ()); return it2_ < it.it2_; } private: subiterator2_type it2_; friend class const_iterator2; }; #endif BOOST_UBLAS_INLINE iterator2 begin2 () { return find2 (0, 0, 0); } BOOST_UBLAS_INLINE iterator2 end2 () { return find2 (0, 0, size2 ()); } // Reverse iterators BOOST_UBLAS_INLINE const_reverse_iterator1 rbegin1 () const { return const_reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crbegin1 () const { return rbegin1(); } BOOST_UBLAS_INLINE const_reverse_iterator1 rend1 () const { return const_reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator1 crend1 () const { return rend1 (); } BOOST_UBLAS_INLINE reverse_iterator1 rbegin1 () { return reverse_iterator1 (end1 ()); } BOOST_UBLAS_INLINE reverse_iterator1 rend1 () { return reverse_iterator1 (begin1 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 rbegin2 () const { return const_reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crbegin2 () const { return rbegin2 (); } BOOST_UBLAS_INLINE const_reverse_iterator2 rend2 () const { return const_reverse_iterator2 (begin2 ()); } BOOST_UBLAS_INLINE const_reverse_iterator2 crend2 () const { return rend2 (); } BOOST_UBLAS_INLINE reverse_iterator2 rbegin2 () { return reverse_iterator2 (end2 ()); } BOOST_UBLAS_INLINE reverse_iterator2 rend2 () { return reverse_iterator2 (begin2 ()); } private: matrix_closure_type data_; static value_type conj_; }; template typename hermitian_adaptor::value_type hermitian_adaptor::conj_; // Specialization for temporary_traits template struct vector_temporary_traits< hermitian_adaptor > : vector_temporary_traits< M > {} ; template struct vector_temporary_traits< const hermitian_adaptor > : vector_temporary_traits< M > {} ; template struct matrix_temporary_traits< hermitian_adaptor > : matrix_temporary_traits< M > {} ; template struct matrix_temporary_traits< const hermitian_adaptor > : matrix_temporary_traits< M > {} ; }}} #endif