// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #define _USE_MATH_DEFINES #include #include #include #include #include "SDL.h" #include "SDL_opengl.h" #ifdef __APPLE__ # include #else # include #endif #include "imgui.h" #include "CrowdTool.h" #include "InputGeom.h" #include "Sample.h" #include "DetourCrowd.h" #include "DetourDebugDraw.h" #include "DetourObstacleAvoidance.h" #include "DetourCommon.h" #include "DetourNode.h" #include "SampleInterfaces.h" #ifdef WIN32 # define snprintf _snprintf #endif static bool isectSegAABB(const float* sp, const float* sq, const float* amin, const float* amax, float& tmin, float& tmax) { static const float EPS = 1e-6f; float d[3]; dtVsub(d, sq, sp); tmin = 0; // set to -FLT_MAX to get first hit on line tmax = FLT_MAX; // set to max distance ray can travel (for segment) // For all three slabs for (int i = 0; i < 3; i++) { if (fabsf(d[i]) < EPS) { // Ray is parallel to slab. No hit if origin not within slab if (sp[i] < amin[i] || sp[i] > amax[i]) return false; } else { // Compute intersection t value of ray with near and far plane of slab const float ood = 1.0f / d[i]; float t1 = (amin[i] - sp[i]) * ood; float t2 = (amax[i] - sp[i]) * ood; // Make t1 be intersection with near plane, t2 with far plane if (t1 > t2) dtSwap(t1, t2); // Compute the intersection of slab intersections intervals if (t1 > tmin) tmin = t1; if (t2 < tmax) tmax = t2; // Exit with no collision as soon as slab intersection becomes empty if (tmin > tmax) return false; } } return true; } static void getAgentBounds(const dtCrowdAgent* ag, float* bmin, float* bmax) { const float* p = ag->npos; const float r = ag->params.radius; const float h = ag->params.height; bmin[0] = p[0] - r; bmin[1] = p[1]; bmin[2] = p[2] - r; bmax[0] = p[0] + r; bmax[1] = p[1] + h; bmax[2] = p[2] + r; } CrowdToolState::CrowdToolState() : m_sample(0), m_nav(0), m_crowd(0), m_targetRef(0), m_run(true) { m_toolParams.m_expandSelectedDebugDraw = true; m_toolParams.m_showCorners = false; m_toolParams.m_showCollisionSegments = false; m_toolParams.m_showPath = false; m_toolParams.m_showVO = false; m_toolParams.m_showOpt = false; m_toolParams.m_showNeis = false; m_toolParams.m_expandDebugDraw = false; m_toolParams.m_showLabels = false; m_toolParams.m_showGrid = false; m_toolParams.m_showNodes = false; m_toolParams.m_showPerfGraph = false; m_toolParams.m_showDetailAll = false; m_toolParams.m_expandOptions = true; m_toolParams.m_anticipateTurns = true; m_toolParams.m_optimizeVis = true; m_toolParams.m_optimizeTopo = true; m_toolParams.m_obstacleAvoidance = true; m_toolParams.m_obstacleAvoidanceType = 3.0f; m_toolParams.m_separation = false; m_toolParams.m_separationWeight = 2.0f; memset(m_trails, 0, sizeof(m_trails)); m_vod = dtAllocObstacleAvoidanceDebugData(); m_vod->init(2048); memset(&m_agentDebug, 0, sizeof(m_agentDebug)); m_agentDebug.idx = -1; m_agentDebug.vod = m_vod; } CrowdToolState::~CrowdToolState() { dtFreeObstacleAvoidanceDebugData(m_vod); } void CrowdToolState::init(class Sample* sample) { if (m_sample != sample) { m_sample = sample; } dtNavMesh* nav = m_sample->getNavMesh(); dtCrowd* crowd = m_sample->getCrowd(); if (nav && crowd && (m_nav != nav || m_crowd != crowd)) { m_nav = nav; m_crowd = crowd; crowd->init(MAX_AGENTS, m_sample->getAgentRadius(), nav); // Make polygons with 'disabled' flag invalid. crowd->getEditableFilter(0)->setExcludeFlags(SAMPLE_POLYFLAGS_DISABLED); // Setup local avoidance params to different qualities. dtObstacleAvoidanceParams params; // Use mostly default settings, copy from dtCrowd. memcpy(¶ms, crowd->getObstacleAvoidanceParams(0), sizeof(dtObstacleAvoidanceParams)); // Low (11) params.velBias = 0.5f; params.adaptiveDivs = 5; params.adaptiveRings = 2; params.adaptiveDepth = 1; crowd->setObstacleAvoidanceParams(0, ¶ms); // Medium (22) params.velBias = 0.5f; params.adaptiveDivs = 5; params.adaptiveRings = 2; params.adaptiveDepth = 2; crowd->setObstacleAvoidanceParams(1, ¶ms); // Good (45) params.velBias = 0.5f; params.adaptiveDivs = 7; params.adaptiveRings = 2; params.adaptiveDepth = 3; crowd->setObstacleAvoidanceParams(2, ¶ms); // High (66) params.velBias = 0.5f; params.adaptiveDivs = 7; params.adaptiveRings = 3; params.adaptiveDepth = 3; crowd->setObstacleAvoidanceParams(3, ¶ms); } } void CrowdToolState::reset() { } void CrowdToolState::handleRender() { duDebugDraw& dd = m_sample->getDebugDraw(); const float rad = m_sample->getAgentRadius(); dtNavMesh* nav = m_sample->getNavMesh(); dtCrowd* crowd = m_sample->getCrowd(); if (!nav || !crowd) return; if (m_toolParams.m_showNodes && crowd->getPathQueue()) { const dtNavMeshQuery* navquery = crowd->getPathQueue()->getNavQuery(); if (navquery) duDebugDrawNavMeshNodes(&dd, *navquery); } dd.depthMask(false); // Draw paths if (m_toolParams.m_showPath) { for (int i = 0; i < crowd->getAgentCount(); i++) { if (m_toolParams.m_showDetailAll == false && i != m_agentDebug.idx) continue; const dtCrowdAgent* ag =crowd->getAgent(i); if (!ag->active) continue; const dtPolyRef* path = ag->corridor.getPath(); const int npath = ag->corridor.getPathCount(); for (int j = 0; j < npath; ++j) duDebugDrawNavMeshPoly(&dd, *nav, path[j], duRGBA(255,255,255,24)); } } if (m_targetRef) duDebugDrawCross(&dd, m_targetPos[0],m_targetPos[1]+0.1f,m_targetPos[2], rad, duRGBA(255,255,255,192), 2.0f); // Occupancy grid. if (m_toolParams.m_showGrid) { float gridy = -FLT_MAX; for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float* pos = ag->corridor.getPos(); gridy = dtMax(gridy, pos[1]); } gridy += 1.0f; dd.begin(DU_DRAW_QUADS); const dtProximityGrid* grid = crowd->getGrid(); const int* bounds = grid->getBounds(); const float cs = grid->getCellSize(); for (int y = bounds[1]; y <= bounds[3]; ++y) { for (int x = bounds[0]; x <= bounds[2]; ++x) { const int count = grid->getItemCountAt(x,y); if (!count) continue; unsigned int col = duRGBA(128,0,0,dtMin(count*40,255)); dd.vertex(x*cs, gridy, y*cs, col); dd.vertex(x*cs, gridy, y*cs+cs, col); dd.vertex(x*cs+cs, gridy, y*cs+cs, col); dd.vertex(x*cs+cs, gridy, y*cs, col); } } dd.end(); } // Trail for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const AgentTrail* trail = &m_trails[i]; const float* pos = ag->npos; dd.begin(DU_DRAW_LINES,3.0f); float prev[3], preva = 1; dtVcopy(prev, pos); for (int j = 0; j < AGENT_MAX_TRAIL-1; ++j) { const int idx = (trail->htrail + AGENT_MAX_TRAIL-j) % AGENT_MAX_TRAIL; const float* v = &trail->trail[idx*3]; float a = 1 - j/(float)AGENT_MAX_TRAIL; dd.vertex(prev[0],prev[1]+0.1f,prev[2], duRGBA(0,0,0,(int)(128*preva))); dd.vertex(v[0],v[1]+0.1f,v[2], duRGBA(0,0,0,(int)(128*a))); preva = a; dtVcopy(prev, v); } dd.end(); } // Corners & co for (int i = 0; i < crowd->getAgentCount(); i++) { if (m_toolParams.m_showDetailAll == false && i != m_agentDebug.idx) continue; const dtCrowdAgent* ag =crowd->getAgent(i); if (!ag->active) continue; const float radius = ag->params.radius; const float* pos = ag->npos; if (m_toolParams.m_showCorners) { if (ag->ncorners) { dd.begin(DU_DRAW_LINES, 2.0f); for (int j = 0; j < ag->ncorners; ++j) { const float* va = j == 0 ? pos : &ag->cornerVerts[(j-1)*3]; const float* vb = &ag->cornerVerts[j*3]; dd.vertex(va[0],va[1]+radius,va[2], duRGBA(128,0,0,192)); dd.vertex(vb[0],vb[1]+radius,vb[2], duRGBA(128,0,0,192)); } if (ag->ncorners && ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) { const float* v = &ag->cornerVerts[(ag->ncorners-1)*3]; dd.vertex(v[0],v[1],v[2], duRGBA(192,0,0,192)); dd.vertex(v[0],v[1]+radius*2,v[2], duRGBA(192,0,0,192)); } dd.end(); if (m_toolParams.m_anticipateTurns) { /* float dvel[3], pos[3]; calcSmoothSteerDirection(ag->pos, ag->cornerVerts, ag->ncorners, dvel); pos[0] = ag->pos[0] + dvel[0]; pos[1] = ag->pos[1] + dvel[1]; pos[2] = ag->pos[2] + dvel[2]; const float off = ag->radius+0.1f; const float* tgt = &ag->cornerVerts[0]; const float y = ag->pos[1]+off; dd.begin(DU_DRAW_LINES, 2.0f); dd.vertex(ag->pos[0],y,ag->pos[2], duRGBA(255,0,0,192)); dd.vertex(pos[0],y,pos[2], duRGBA(255,0,0,192)); dd.vertex(pos[0],y,pos[2], duRGBA(255,0,0,192)); dd.vertex(tgt[0],y,tgt[2], duRGBA(255,0,0,192)); dd.end();*/ } } } if (m_toolParams.m_showCollisionSegments) { const float* center = ag->boundary.getCenter(); duDebugDrawCross(&dd, center[0],center[1]+radius,center[2], 0.2f, duRGBA(192,0,128,255), 2.0f); duDebugDrawCircle(&dd, center[0],center[1]+radius,center[2], ag->params.collisionQueryRange, duRGBA(192,0,128,128), 2.0f); dd.begin(DU_DRAW_LINES, 3.0f); for (int j = 0; j < ag->boundary.getSegmentCount(); ++j) { const float* s = ag->boundary.getSegment(j); unsigned int col = duRGBA(192,0,128,192); if (dtTriArea2D(pos, s, s+3) < 0.0f) col = duDarkenCol(col); duAppendArrow(&dd, s[0],s[1]+0.2f,s[2], s[3],s[4]+0.2f,s[5], 0.0f, 0.3f, col); } dd.end(); } if (m_toolParams.m_showNeis) { duDebugDrawCircle(&dd, pos[0],pos[1]+radius,pos[2], ag->params.collisionQueryRange, duRGBA(0,192,128,128), 2.0f); dd.begin(DU_DRAW_LINES, 2.0f); for (int j = 0; j < ag->nneis; ++j) { // Get 'n'th active agent. // TODO: fix this properly. const dtCrowdAgent* nei = crowd->getAgent(ag->neis[j].idx); if (nei) { dd.vertex(pos[0],pos[1]+radius,pos[2], duRGBA(0,192,128,128)); dd.vertex(nei->npos[0],nei->npos[1]+radius,nei->npos[2], duRGBA(0,192,128,128)); } } dd.end(); } if (m_toolParams.m_showOpt) { dd.begin(DU_DRAW_LINES, 2.0f); dd.vertex(m_agentDebug.optStart[0],m_agentDebug.optStart[1]+0.3f,m_agentDebug.optStart[2], duRGBA(0,128,0,192)); dd.vertex(m_agentDebug.optEnd[0],m_agentDebug.optEnd[1]+0.3f,m_agentDebug.optEnd[2], duRGBA(0,128,0,192)); dd.end(); } } // Agent cylinders. for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float radius = ag->params.radius; const float* pos = ag->npos; unsigned int col = duRGBA(0,0,0,32); if (m_agentDebug.idx == i) col = duRGBA(255,0,0,128); duDebugDrawCircle(&dd, pos[0], pos[1], pos[2], radius, col, 2.0f); } for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float height = ag->params.height; const float radius = ag->params.radius; const float* pos = ag->npos; unsigned int col = duRGBA(220,220,220,128); if (ag->targetState == DT_CROWDAGENT_TARGET_REQUESTING || ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE) col = duLerpCol(col, duRGBA(128,0,255,128), 32); else if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_PATH) col = duLerpCol(col, duRGBA(128,0,255,128), 128); else if (ag->targetState == DT_CROWDAGENT_TARGET_FAILED) col = duRGBA(255,32,16,128); else if (ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) col = duLerpCol(col, duRGBA(64,255,0,128), 128); duDebugDrawCylinder(&dd, pos[0]-radius, pos[1]+radius*0.1f, pos[2]-radius, pos[0]+radius, pos[1]+height, pos[2]+radius, col); } if (m_toolParams.m_showVO) { for (int i = 0; i < crowd->getAgentCount(); i++) { if (m_toolParams.m_showDetailAll == false && i != m_agentDebug.idx) continue; const dtCrowdAgent* ag =crowd->getAgent(i); if (!ag->active) continue; // Draw detail about agent sela const dtObstacleAvoidanceDebugData* vod = m_agentDebug.vod; const float dx = ag->npos[0]; const float dy = ag->npos[1]+ag->params.height; const float dz = ag->npos[2]; duDebugDrawCircle(&dd, dx,dy,dz, ag->params.maxSpeed, duRGBA(255,255,255,64), 2.0f); dd.begin(DU_DRAW_QUADS); for (int j = 0; j < vod->getSampleCount(); ++j) { const float* p = vod->getSampleVelocity(j); const float sr = vod->getSampleSize(j); const float pen = vod->getSamplePenalty(j); const float pen2 = vod->getSamplePreferredSidePenalty(j); unsigned int col = duLerpCol(duRGBA(255,255,255,220), duRGBA(128,96,0,220), (int)(pen*255)); col = duLerpCol(col, duRGBA(128,0,0,220), (int)(pen2*128)); dd.vertex(dx+p[0]-sr, dy, dz+p[2]-sr, col); dd.vertex(dx+p[0]-sr, dy, dz+p[2]+sr, col); dd.vertex(dx+p[0]+sr, dy, dz+p[2]+sr, col); dd.vertex(dx+p[0]+sr, dy, dz+p[2]-sr, col); } dd.end(); } } // Velocity stuff. for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float radius = ag->params.radius; const float height = ag->params.height; const float* pos = ag->npos; const float* vel = ag->vel; const float* dvel = ag->dvel; unsigned int col = duRGBA(220,220,220,192); if (ag->targetState == DT_CROWDAGENT_TARGET_REQUESTING || ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE) col = duLerpCol(col, duRGBA(128,0,255,192), 32); else if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_PATH) col = duLerpCol(col, duRGBA(128,0,255,192), 128); else if (ag->targetState == DT_CROWDAGENT_TARGET_FAILED) col = duRGBA(255,32,16,192); else if (ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) col = duLerpCol(col, duRGBA(64,255,0,192), 128); duDebugDrawCircle(&dd, pos[0], pos[1]+height, pos[2], radius, col, 2.0f); duDebugDrawArrow(&dd, pos[0],pos[1]+height,pos[2], pos[0]+dvel[0],pos[1]+height+dvel[1],pos[2]+dvel[2], 0.0f, 0.4f, duRGBA(0,192,255,192), (m_agentDebug.idx == i) ? 2.0f : 1.0f); duDebugDrawArrow(&dd, pos[0],pos[1]+height,pos[2], pos[0]+vel[0],pos[1]+height+vel[1],pos[2]+vel[2], 0.0f, 0.4f, duRGBA(0,0,0,160), 2.0f); } dd.depthMask(true); } void CrowdToolState::handleRenderOverlay(double* proj, double* model, int* view) { GLdouble x, y, z; // Draw start and end point labels if (m_targetRef && gluProject((GLdouble)m_targetPos[0], (GLdouble)m_targetPos[1], (GLdouble)m_targetPos[2], model, proj, view, &x, &y, &z)) { imguiDrawText((int)x, (int)(y+25), IMGUI_ALIGN_CENTER, "TARGET", imguiRGBA(0,0,0,220)); } char label[32]; if (m_toolParams.m_showNodes) { dtCrowd* crowd = m_sample->getCrowd(); if (crowd && crowd->getPathQueue()) { const dtNavMeshQuery* navquery = crowd->getPathQueue()->getNavQuery(); const dtNodePool* pool = navquery->getNodePool(); if (pool) { const float off = 0.5f; for (int i = 0; i < pool->getHashSize(); ++i) { for (dtNodeIndex j = pool->getFirst(i); j != DT_NULL_IDX; j = pool->getNext(j)) { const dtNode* node = pool->getNodeAtIdx(j+1); if (!node) continue; if (gluProject((GLdouble)node->pos[0],(GLdouble)node->pos[1]+off,(GLdouble)node->pos[2], model, proj, view, &x, &y, &z)) { const float heuristic = node->total;// - node->cost; snprintf(label, 32, "%.2f", heuristic); imguiDrawText((int)x, (int)y+15, IMGUI_ALIGN_CENTER, label, imguiRGBA(0,0,0,220)); } } } } } } if (m_toolParams.m_showLabels) { dtCrowd* crowd = m_sample->getCrowd(); if (crowd) { for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float* pos = ag->npos; const float h = ag->params.height; if (gluProject((GLdouble)pos[0], (GLdouble)pos[1]+h, (GLdouble)pos[2], model, proj, view, &x, &y, &z)) { snprintf(label, 32, "%d", i); imguiDrawText((int)x, (int)y+15, IMGUI_ALIGN_CENTER, label, imguiRGBA(0,0,0,220)); } } } } if (m_agentDebug.idx != -1) { dtCrowd* crowd = m_sample->getCrowd(); if (crowd) { for (int i = 0; i < crowd->getAgentCount(); i++) { if (m_toolParams.m_showDetailAll == false && i != m_agentDebug.idx) continue; const dtCrowdAgent* ag =crowd->getAgent(i); if (!ag->active) continue; const float radius = ag->params.radius; if (m_toolParams.m_showNeis) { for (int j = 0; j < ag->nneis; ++j) { const dtCrowdAgent* nei = crowd->getAgent(ag->neis[j].idx); if (!nei->active) continue; if (gluProject((GLdouble)nei->npos[0], (GLdouble)nei->npos[1]+radius, (GLdouble)nei->npos[2], model, proj, view, &x, &y, &z)) { snprintf(label, 32, "%.3f", ag->neis[j].dist); imguiDrawText((int)x, (int)y+15, IMGUI_ALIGN_CENTER, label, imguiRGBA(255,255,255,220)); } } } } } } if (m_toolParams.m_showPerfGraph) { GraphParams gp; gp.setRect(300, 10, 500, 200, 8); gp.setValueRange(0.0f, 2.0f, 4, "ms"); drawGraphBackground(&gp); drawGraph(&gp, &m_crowdTotalTime, 1, "Total", duRGBA(255,128,0,255)); gp.setRect(300, 10, 500, 50, 8); gp.setValueRange(0.0f, 2000.0f, 1, ""); drawGraph(&gp, &m_crowdSampleCount, 0, "Sample Count", duRGBA(96,96,96,128)); } } void CrowdToolState::handleUpdate(const float dt) { if (m_run) updateTick(dt); } void CrowdToolState::addAgent(const float* p) { if (!m_sample) return; dtCrowd* crowd = m_sample->getCrowd(); dtCrowdAgentParams ap; memset(&ap, 0, sizeof(ap)); ap.radius = m_sample->getAgentRadius(); ap.height = m_sample->getAgentHeight(); ap.maxAcceleration = 8.0f; ap.maxSpeed = 3.5f; ap.collisionQueryRange = ap.radius * 12.0f; ap.pathOptimizationRange = ap.radius * 30.0f; ap.updateFlags = 0; if (m_toolParams.m_anticipateTurns) ap.updateFlags |= DT_CROWD_ANTICIPATE_TURNS; if (m_toolParams.m_optimizeVis) ap.updateFlags |= DT_CROWD_OPTIMIZE_VIS; if (m_toolParams.m_optimizeTopo) ap.updateFlags |= DT_CROWD_OPTIMIZE_TOPO; if (m_toolParams.m_obstacleAvoidance) ap.updateFlags |= DT_CROWD_OBSTACLE_AVOIDANCE; if (m_toolParams.m_separation) ap.updateFlags |= DT_CROWD_SEPARATION; ap.obstacleAvoidanceType = (unsigned char)m_toolParams.m_obstacleAvoidanceType; ap.separationWeight = m_toolParams.m_separationWeight; int idx = crowd->addAgent(p, &ap); if (idx != -1) { if (m_targetRef) crowd->requestMoveTarget(idx, m_targetRef, m_targetPos); // Init trail AgentTrail* trail = &m_trails[idx]; for (int i = 0; i < AGENT_MAX_TRAIL; ++i) dtVcopy(&trail->trail[i*3], p); trail->htrail = 0; } } void CrowdToolState::removeAgent(const int idx) { if (!m_sample) return; dtCrowd* crowd = m_sample->getCrowd(); crowd->removeAgent(idx); if (idx == m_agentDebug.idx) m_agentDebug.idx = -1; } void CrowdToolState::hilightAgent(const int idx) { m_agentDebug.idx = idx; } static void calcVel(float* vel, const float* pos, const float* tgt, const float speed) { dtVsub(vel, tgt, pos); vel[1] = 0.0; dtVnormalize(vel); dtVscale(vel, vel, speed); } void CrowdToolState::setMoveTarget(const float* p, bool adjust) { if (!m_sample) return; // Find nearest point on navmesh and set move request to that location. dtNavMeshQuery* navquery = m_sample->getNavMeshQuery(); dtCrowd* crowd = m_sample->getCrowd(); const dtQueryFilter* filter = crowd->getFilter(0); const float* halfExtents = crowd->getQueryExtents(); if (adjust) { float vel[3]; // Request velocity if (m_agentDebug.idx != -1) { const dtCrowdAgent* ag = crowd->getAgent(m_agentDebug.idx); if (ag && ag->active) { calcVel(vel, ag->npos, p, ag->params.maxSpeed); crowd->requestMoveVelocity(m_agentDebug.idx, vel); } } else { for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; calcVel(vel, ag->npos, p, ag->params.maxSpeed); crowd->requestMoveVelocity(i, vel); } } } else { navquery->findNearestPoly(p, halfExtents, filter, &m_targetRef, m_targetPos); if (m_agentDebug.idx != -1) { const dtCrowdAgent* ag = crowd->getAgent(m_agentDebug.idx); if (ag && ag->active) crowd->requestMoveTarget(m_agentDebug.idx, m_targetRef, m_targetPos); } else { for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; crowd->requestMoveTarget(i, m_targetRef, m_targetPos); } } } } int CrowdToolState::hitTestAgents(const float* s, const float* p) { if (!m_sample) return -1; dtCrowd* crowd = m_sample->getCrowd(); int isel = -1; float tsel = FLT_MAX; for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; float bmin[3], bmax[3]; getAgentBounds(ag, bmin, bmax); float tmin, tmax; if (isectSegAABB(s, p, bmin,bmax, tmin, tmax)) { if (tmin > 0 && tmin < tsel) { isel = i; tsel = tmin; } } } return isel; } void CrowdToolState::updateAgentParams() { if (!m_sample) return; dtCrowd* crowd = m_sample->getCrowd(); if (!crowd) return; unsigned char updateFlags = 0; unsigned char obstacleAvoidanceType = 0; if (m_toolParams.m_anticipateTurns) updateFlags |= DT_CROWD_ANTICIPATE_TURNS; if (m_toolParams.m_optimizeVis) updateFlags |= DT_CROWD_OPTIMIZE_VIS; if (m_toolParams.m_optimizeTopo) updateFlags |= DT_CROWD_OPTIMIZE_TOPO; if (m_toolParams.m_obstacleAvoidance) updateFlags |= DT_CROWD_OBSTACLE_AVOIDANCE; if (m_toolParams.m_obstacleAvoidance) updateFlags |= DT_CROWD_OBSTACLE_AVOIDANCE; if (m_toolParams.m_separation) updateFlags |= DT_CROWD_SEPARATION; obstacleAvoidanceType = (unsigned char)m_toolParams.m_obstacleAvoidanceType; dtCrowdAgentParams params; for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; memcpy(¶ms, &ag->params, sizeof(dtCrowdAgentParams)); params.updateFlags = updateFlags; params.obstacleAvoidanceType = obstacleAvoidanceType; params.separationWeight = m_toolParams.m_separationWeight; crowd->updateAgentParameters(i, ¶ms); } } void CrowdToolState::updateTick(const float dt) { if (!m_sample) return; dtNavMesh* nav = m_sample->getNavMesh(); dtCrowd* crowd = m_sample->getCrowd(); if (!nav || !crowd) return; TimeVal startTime = getPerfTime(); crowd->update(dt, &m_agentDebug); TimeVal endTime = getPerfTime(); // Update agent trails for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); AgentTrail* trail = &m_trails[i]; if (!ag->active) continue; // Update agent movement trail. trail->htrail = (trail->htrail + 1) % AGENT_MAX_TRAIL; dtVcopy(&trail->trail[trail->htrail*3], ag->npos); } m_agentDebug.vod->normalizeSamples(); m_crowdSampleCount.addSample((float)crowd->getVelocitySampleCount()); m_crowdTotalTime.addSample(getPerfTimeUsec(endTime - startTime) / 1000.0f); } CrowdTool::CrowdTool() : m_sample(0), m_state(0), m_mode(TOOLMODE_CREATE) { } void CrowdTool::init(Sample* sample) { if (m_sample != sample) { m_sample = sample; } if (!sample) return; m_state = (CrowdToolState*)sample->getToolState(type()); if (!m_state) { m_state = new CrowdToolState(); sample->setToolState(type(), m_state); } m_state->init(sample); } void CrowdTool::reset() { } void CrowdTool::handleMenu() { if (!m_state) return; CrowdToolParams* params = m_state->getToolParams(); if (imguiCheck("Create Agents", m_mode == TOOLMODE_CREATE)) m_mode = TOOLMODE_CREATE; if (imguiCheck("Move Target", m_mode == TOOLMODE_MOVE_TARGET)) m_mode = TOOLMODE_MOVE_TARGET; if (imguiCheck("Select Agent", m_mode == TOOLMODE_SELECT)) m_mode = TOOLMODE_SELECT; if (imguiCheck("Toggle Polys", m_mode == TOOLMODE_TOGGLE_POLYS)) m_mode = TOOLMODE_TOGGLE_POLYS; imguiSeparatorLine(); if (imguiCollapse("Options", 0, params->m_expandOptions)) params->m_expandOptions = !params->m_expandOptions; if (params->m_expandOptions) { imguiIndent(); if (imguiCheck("Optimize Visibility", params->m_optimizeVis)) { params->m_optimizeVis = !params->m_optimizeVis; m_state->updateAgentParams(); } if (imguiCheck("Optimize Topology", params->m_optimizeTopo)) { params->m_optimizeTopo = !params->m_optimizeTopo; m_state->updateAgentParams(); } if (imguiCheck("Anticipate Turns", params->m_anticipateTurns)) { params->m_anticipateTurns = !params->m_anticipateTurns; m_state->updateAgentParams(); } if (imguiCheck("Obstacle Avoidance", params->m_obstacleAvoidance)) { params->m_obstacleAvoidance = !params->m_obstacleAvoidance; m_state->updateAgentParams(); } if (imguiSlider("Avoidance Quality", ¶ms->m_obstacleAvoidanceType, 0.0f, 3.0f, 1.0f)) { m_state->updateAgentParams(); } if (imguiCheck("Separation", params->m_separation)) { params->m_separation = !params->m_separation; m_state->updateAgentParams(); } if (imguiSlider("Separation Weight", ¶ms->m_separationWeight, 0.0f, 20.0f, 0.01f)) { m_state->updateAgentParams(); } imguiUnindent(); } if (imguiCollapse("Selected Debug Draw", 0, params->m_expandSelectedDebugDraw)) params->m_expandSelectedDebugDraw = !params->m_expandSelectedDebugDraw; if (params->m_expandSelectedDebugDraw) { imguiIndent(); if (imguiCheck("Show Corners", params->m_showCorners)) params->m_showCorners = !params->m_showCorners; if (imguiCheck("Show Collision Segs", params->m_showCollisionSegments)) params->m_showCollisionSegments = !params->m_showCollisionSegments; if (imguiCheck("Show Path", params->m_showPath)) params->m_showPath = !params->m_showPath; if (imguiCheck("Show VO", params->m_showVO)) params->m_showVO = !params->m_showVO; if (imguiCheck("Show Path Optimization", params->m_showOpt)) params->m_showOpt = !params->m_showOpt; if (imguiCheck("Show Neighbours", params->m_showNeis)) params->m_showNeis = !params->m_showNeis; imguiUnindent(); } if (imguiCollapse("Debug Draw", 0, params->m_expandDebugDraw)) params->m_expandDebugDraw = !params->m_expandDebugDraw; if (params->m_expandDebugDraw) { imguiIndent(); if (imguiCheck("Show Labels", params->m_showLabels)) params->m_showLabels = !params->m_showLabels; if (imguiCheck("Show Prox Grid", params->m_showGrid)) params->m_showGrid = !params->m_showGrid; if (imguiCheck("Show Nodes", params->m_showNodes)) params->m_showNodes = !params->m_showNodes; if (imguiCheck("Show Perf Graph", params->m_showPerfGraph)) params->m_showPerfGraph = !params->m_showPerfGraph; if (imguiCheck("Show Detail All", params->m_showDetailAll)) params->m_showDetailAll = !params->m_showDetailAll; imguiUnindent(); } } void CrowdTool::handleClick(const float* s, const float* p, bool shift) { if (!m_sample) return; if (!m_state) return; InputGeom* geom = m_sample->getInputGeom(); if (!geom) return; dtCrowd* crowd = m_sample->getCrowd(); if (!crowd) return; if (m_mode == TOOLMODE_CREATE) { if (shift) { // Delete int ahit = m_state->hitTestAgents(s,p); if (ahit != -1) m_state->removeAgent(ahit); } else { // Add m_state->addAgent(p); } } else if (m_mode == TOOLMODE_MOVE_TARGET) { m_state->setMoveTarget(p, shift); } else if (m_mode == TOOLMODE_SELECT) { // Highlight int ahit = m_state->hitTestAgents(s,p); m_state->hilightAgent(ahit); } else if (m_mode == TOOLMODE_TOGGLE_POLYS) { dtNavMesh* nav = m_sample->getNavMesh(); dtNavMeshQuery* navquery = m_sample->getNavMeshQuery(); if (nav && navquery) { dtQueryFilter filter; const float* halfExtents = crowd->getQueryExtents(); float tgt[3]; dtPolyRef ref; navquery->findNearestPoly(p, halfExtents, &filter, &ref, tgt); if (ref) { unsigned short flags = 0; if (dtStatusSucceed(nav->getPolyFlags(ref, &flags))) { flags ^= SAMPLE_POLYFLAGS_DISABLED; nav->setPolyFlags(ref, flags); } } } } } void CrowdTool::handleStep() { if (!m_state) return; const float dt = 1.0f/20.0f; m_state->updateTick(dt); m_state->setRunning(false); } void CrowdTool::handleToggle() { if (!m_state) return; m_state->setRunning(!m_state->isRunning()); } void CrowdTool::handleUpdate(const float dt) { rcIgnoreUnused(dt); } void CrowdTool::handleRender() { } void CrowdTool::handleRenderOverlay(double* proj, double* model, int* view) { rcIgnoreUnused(model); rcIgnoreUnused(proj); // Tool help const int h = view[3]; int ty = h-40; if (m_mode == TOOLMODE_CREATE) { imguiDrawText(280, ty, IMGUI_ALIGN_LEFT, "LMB: add agent. Shift+LMB: remove agent.", imguiRGBA(255,255,255,192)); } else if (m_mode == TOOLMODE_MOVE_TARGET) { imguiDrawText(280, ty, IMGUI_ALIGN_LEFT, "LMB: set move target. Shift+LMB: adjust set velocity.", imguiRGBA(255,255,255,192)); ty -= 20; imguiDrawText(280, ty, IMGUI_ALIGN_LEFT, "Setting velocity will move the agents without pathfinder.", imguiRGBA(255,255,255,192)); } else if (m_mode == TOOLMODE_SELECT) { imguiDrawText(280, ty, IMGUI_ALIGN_LEFT, "LMB: select agent.", imguiRGBA(255,255,255,192)); } ty -= 20; imguiDrawText(280, ty, IMGUI_ALIGN_LEFT, "SPACE: Run/Pause simulation. 1: Step simulation.", imguiRGBA(255,255,255,192)); ty -= 20; if (m_state && m_state->isRunning()) imguiDrawText(280, ty, IMGUI_ALIGN_LEFT, "- RUNNING -", imguiRGBA(255,32,16,255)); else imguiDrawText(280, ty, IMGUI_ALIGN_LEFT, "- PAUSED -", imguiRGBA(255,255,255,128)); }