// Copyright Christopher Kormanyos 2013. // Copyright Paul A. Bristow 2013. // Copyright John Maddock 2013. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or // copy at http://www.boost.org/LICENSE_1_0.txt). #ifdef _MSC_VER # pragma warning (disable : 4512) // assignment operator could not be generated. # pragma warning (disable : 4996) // assignment operator could not be generated. #endif #include #include #include #include #include #include // Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource. // http://mathworld.wolfram.com/BesselFunctionZeros.html // Test values can be calculated using [@wolframalpha.com WolframAplha] // See also http://dlmf.nist.gov/10.21 //[bessel_zeros_example_1 /*`This example demonstrates calculating zeros of the Bessel and Neumann functions. It also shows how Boost.Math and Boost.Multiprecision can be combined to provide a many decimal digit precision. For 50 decimal digit precision we need to include */ #include /*`and a `typedef` for `float_type` may be convenient (allowing a quick switch to re-compute at built-in `double` or other precision) */ typedef boost::multiprecision::cpp_dec_float_50 float_type; //`To use the functions for finding zeros of the functions we need #include //`This file includes the forward declaration signatures for the zero-finding functions: // #include /*`but more details are in the full documentation, for example at [@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions]. */ /*`This example shows obtaining both a single zero of the Bessel function, and then placing multiple zeros into a container like `std::vector` by providing an iterator. */ //] [/bessel_zeros_example_1] /*The signature of the single value function is: template inline typename detail::bessel_traits >::result_type cyl_bessel_j_zero( T v, // Floating-point value for Jv. int m); // start index. The result type is controlled by the floating-point type of parameter `v` (but subject to the usual __precision_policy and __promotion_policy). The signature of multiple zeros function is: template inline OutputIterator cyl_bessel_j_zero( T v, // Floating-point value for Jv. int start_index, // 1-based start index. unsigned number_of_zeros, // How many zeros to generate OutputIterator out_it); // Destination for zeros. There is also a version which allows control of the __policy_section for error handling and precision. template inline OutputIterator cyl_bessel_j_zero( T v, // Floating-point value for Jv. int start_index, // 1-based start index. unsigned number_of_zeros, // How many zeros to generate OutputIterator out_it, // Destination for zeros. const Policy& pol); // Policy to use. */ int main() { try { //[bessel_zeros_example_2 /*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks; this will ensure that helpful error messages are shown when exceptional conditions arise.] First, evaluate a single Bessel zero. The precision is controlled by the float-point type of template parameter `T` of `v` so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double). */ // double root = boost::math::cyl_bessel_j_zero(0.0, 1); // // Displaying with default precision of 6 decimal digits: // std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483 // // And with all the guaranteed (15) digits: // std::cout.precision(std::numeric_limits::digits10); // std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577 /*`But note that because the parameter `v` controls the precision of the result, `v` [*must be a floating-point type]. So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus: `` root = boost::math::cyl_bessel_j_zero(0, 1); `` with this error message `` error C2338: Order must be a floating-point type. `` Optionally, we can use a policy to ignore errors, C-style, returning some value, perhaps infinity or NaN, or the best that can be done. (See __user_error_handling). To create a (possibly unwise!) policy `ignore_all_policy` that ignores all errors: */ typedef boost::math::policies::policy< boost::math::policies::domain_error, boost::math::policies::overflow_error, boost::math::policies::underflow_error, boost::math::policies::denorm_error, boost::math::policies::pole_error, boost::math::policies::evaluation_error > ignore_all_policy; //`Examples of use of this `ignore_all_policy` are double inf = std::numeric_limits::infinity(); double nan = std::numeric_limits::quiet_NaN(); double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 1, ignore_all_policy()); std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy()); std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy()); std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN /*`Another version of `cyl_bessel_j_zero` allows calculation of multiple zeros with one call, placing the results in a container, often `std::vector`. For example, generate and display the first five `double` roots of J[sub v] for integral order 2, as column ['J[sub 2](x)] in table 1 of [@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros]. */ unsigned int n_roots = 5U; std::vector roots; boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots)); std::copy(roots.begin(), roots.end(), std::ostream_iterator(std::cout, "\n")); /*`Or we can use Boost.Multiprecision to generate 50 decimal digit roots of ['J[sub v]] for non-integral order `v= 71/19 == 3.736842`, expressed as an exact-integer fraction to generate the most accurate value possible for all floating-point types. We set the precision of the output stream, and show trailing zeros to display a fixed 50 decimal digits. */ std::cout.precision(std::numeric_limits::digits10); // 50 decimal digits. std::cout << std::showpoint << std::endl; // Show trailing zeros. float_type x = float_type(71) / 19; float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root. std::cout << "x = " << x << ", r = " << r << std::endl; r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root. std::cout << "x = " << x << ", r = " << r << std::endl; std::vector zeros; boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros)); std::cout << "cyl_bessel_j_zeros" << std::endl; // Print the roots to the output stream. std::copy(zeros.begin(), zeros.end(), std::ostream_iterator(std::cout, "\n")); //] [/bessel_zeros_example_2] } catch (std::exception const& ex) { std::cout << "Thrown exception " << ex.what() << std::endl; } } // int main() /* Output: Description: Autorun "J:\Cpp\big_number\Debug\bessel_zeros_example_1.exe" boost::math::cyl_bessel_j_zero(-1.0, 1) 3.83171 boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN 5.13562 8.41724 11.6198 14.796 17.9598 x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623 x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458 cyl_bessel_j_zeros 7.2731751938316489503185694262290765588963196701623 10.724858308883141732536172745851416647110749599085 14.018504599452388106120459558042660282427471931581 */