// Copyright John Maddock 2016 // Copyright Christopher Kormanyos 2016. // Copyright Paul A. Bristow 2016. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // Contains Quickbook snippets as C++ comments - do not remove. // http://gcc.gnu.org/onlinedocs/libquadmath/ GCC Quad-Precision Math Library // https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format // https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Dialect-Options.html#C_002b_002b-Dialect-Options GNU 3.5 Options Controlling C++ Dialect // https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#C-Dialect-Options 3.4 Options Controlling C Dialect //[float128_includes_1 #include // For float_64_t, float128_t. Must be first include! //#include #include #include // For gamma function. #include // For constants pi, e ... #include // #include // for pow function. // #include // C:\program files\gcc-6-win64\lib\gcc\x86_64-w64-mingw32\6.1.1\include\quadmath.h // i:\modular-boost\boost\multiprecision\float128.hpp|210| undefined reference to `quadmath_snprintf'. //] [/float128_includes_1] //[float128_dialect_1 /*`To make float128 available it is vital to get the dialect and options on the command line correct. Quad type is forbidden by all the strict C++ standards, so using or adding -std=c++11 and later standards will prevent its use. so explicitly use -std=gnu++11, 1y, 14, 17, or 1z or ... For GCC 6.1.1, for example, the default is if no C++ language dialect options are given, is -std=gnu++14. See https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#C-Dialect-Options https://gcc.gnu.org/onlinedocs/gcc/Standards.html#Standards 2 Language Standards Supported by GCC g++.exe -Wall -fexceptions -std=gnu++17 -g -fext-numeric-literals -fpermissive -lquadmath -II:\modular-boost\libs\math\include -Ii:\modular-boost -c J:\Cpp\float128\float128\float128_example.cpp -o obj\Debug\float128_example.o Requires GCC linker option -lquadmath If this is missing, then get errors like: \modular-boost\boost\multiprecision\float128.hpp|210|undefined reference to `quadmath_snprintf'| \modular-boost\boost\multiprecision\float128.hpp|351|undefined reference to `sqrtq'| Requires compile option -fext-numeric-literals If missing, then get errors like: \modular-boost\libs\math\include/boost/math/cstdfloat/cstdfloat_types.hpp:229:43: error: unable to find numeric literal operator 'operator""Q' A successful build log was: g++.exe -Wall -std=c++11 -fexceptions -std=gnu++17 -g -fext-numeric-literals -II:\modular-boost\libs\math\include -Ii:\modular-boost -c J:\Cpp\float128\float128\float128_example.cpp -o obj\Debug\float128_example.o g++.exe -o bin\Debug\float128.exe obj\Debug\float128_example.o -lquadmath */ //] [/float128_dialect_1] void show_versions(std::string title) { std::cout << title << std::endl; std::cout << "Platform: " << BOOST_PLATFORM << '\n' << "Compiler: " << BOOST_COMPILER << '\n' << "STL : " << BOOST_STDLIB << '\n' << "Boost : " << BOOST_VERSION / 100000 << "." << BOOST_VERSION / 100 % 1000 << "." << BOOST_VERSION % 100 << std::endl; #ifdef _MSC_VER std::cout << "_MSC_FULL_VER = " << _MSC_FULL_VER << std::endl; // VS 2015 190023026 #if defined _M_IX86 std::cout << "(x86)" << std::endl; #endif #if defined _M_X64 std::cout << " (x64)" << std::endl; #endif #if defined _M_IA64 std::cout << " (Itanium)" << std::endl; #endif // Something very wrong if more than one is defined (so show them in all just in case)! #endif // _MSC_VER #ifdef __GNUC__ //PRINT_MACRO(__GNUC__); //PRINT_MACRO(__GNUC_MINOR__); //PRINT_MACRO(__GNUC_PATCH__); std::cout << "GCC " << __VERSION__ << std::endl; //PRINT_MACRO(LONG_MAX); #endif // __GNUC__ return; } // void show_version(std::string title) int main() { try { //[float128_example_3 // Always use try'n'catch blocks to ensure any error messages are displayed. //`Ensure that all possibly significant digits (17) including trailing zeros are shown. std::cout.precision(std::numeric_limits::max_digits10); std::cout.setf(std::ios::showpoint); // Show all significant trailing zeros. //] [/ float128_example_3] #ifdef BOOST_FLOAT128_C std::cout << "Floating-point type boost::float128_t is available." << std::endl; std::cout << " std::numeric_limits::digits10 == " << std::numeric_limits::digits10 << std::endl; std::cout << " std::numeric_limits::max_digits10 == " << std::numeric_limits::max_digits10 << std::endl; #else std::cout << "Floating-point type boost::float128_t is NOT available." << std::endl; #endif show_versions(""); using boost::multiprecision::float128; // Wraps, for example, __float128 or _Quad. // or //using namespace boost::multiprecision; std::cout.precision(std::numeric_limits::max_digits10); // Show all potentially meaningful digits. std::cout.setf(std::ios::showpoint); // Show all significant trailing zeros. // float128 pi0 = boost::math::constants::pi(); // Compile fails - need to specify a type for the constant! float128 pi1 = boost::math::constants::pi(); // Returns a constant of type float128. std::cout << sqrt(pi1) << std::endl; // 1.77245385090551602729816748334114514 float128 pi2 = boost::math::constants::pi<__float128>(); // Constant of type __float128 gets converted to float128 on the assignment. std::cout << sqrt(pi2) << std::endl; // 1.77245385090551602729816748334114514 // DIY decimal digit literal constant, with suffix Q. float128 pi3 = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348Q; std::cout << sqrt(pi3) << std::endl; // 1.77245385090551602729816748334114514 // Compare to ready-rolled sqrt(pi) constant from Boost.Math: std::cout << boost::math::constants::root_pi() << std::endl; // 1.77245385090551602729816748334114514 // DIY decimal digit literal constant, without suffix Q, suffering seventeen silent digits loss of precision! float128 pi4 = 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348; std::cout << sqrt(pi4) << std::endl; // 1.77245385090551599275151910313924857 // float128 variables constructed from a quad-type literal can be declared constexpr if required: #ifndef BOOST_NO_CXX11_CONSTEXPR constexpr float128 pi_constexpr = 3.1415926535897932384626433832795028841971693993751058Q; #endif std::cout << pi_constexpr << std::endl; // 3.14159265358979323846264338327950280 // But sadly functions like sqrt are not yet available constexpr for float128. // constexpr float128 root_pi_constexpr = sqrt(pi_constexpr); // Fails - not constexpr (yet). // constexpr float128 root_pi_constexpr = std::sqrt(pi_constexpr); // Fails - no known conversion for argument 1 from 'const float128'. // constexpr float128 root_pi_constexpr = sqrt(pi_constexpr); // Call to non-constexpr // constexpr float128 root_pi_constexpr = boost::math::constants::root_pi(); // Missing type for constant. // Best current way to get a constexpr is to use a Boost.Math constant if one is available. constexpr float128 root_pi_constexpr = boost::math::constants::root_pi(); std::cout << root_pi_constexpr << std::endl; // 1.77245385090551602729816748334114514 // Note that casts within the sqrt call are NOT NEEDED (nor allowed), // since all the variables are the correct type to begin with. // std::cout << sqrt(pi3) << std::endl; // But note examples of catastrophic (but hard to see) loss of precision below. // Note also that the library functions, here sqrt, is NOT defined using std::sqrt, // so that the correct overload is found using Argument Dependent LookUp (ADL). float128 ee = boost::math::constants::e(); std::cout << ee << std::endl; // 2.71828182845904523536028747135266231 float128 e1 = exp(1.Q); // Note argument to exp is type float128. std::cout << e1 << std::endl; // 2.71828182845904523536028747135266231 // Beware - it is all too easy to silently get a much lower precision by mistake. float128 e1d = exp(1.); // Caution - only double 17 decimal digits precision! std::cout << e1d << std::endl; // 2.71828182845904509079559829842764884 float128 e1i = exp(1); // Caution int promoted to double so only 17 decimal digits precision! std::cout << e1i << std::endl; // 2.71828182845904509079559829842764884 float f1 = 1.F; float128 e1f = exp(f1); // Caution float so only 6 decimal digits precision out of 36! std::cout << e1f << std::endl; // 2.71828174591064453125000000000000000 // In all these cases you get what you asked for and not what you expected or wanted. // Casting is essential if you start with a lower precision type. float128 e1q = exp(static_cast(f1)); // Full 36 decimal digits precision! std::cout << e1q << std::endl; // 2.71828182845904523536028747135266231 float128 e1qc = exp((float128)f1); // Full 36 decimal digits precision! std::cout << e1qc << std::endl; // 2.71828182845904523536028747135266231 float128 e1qcc = exp(float128(f1)); // Full 36 decimal digits precision! std::cout << e1qcc << std::endl; // 2.71828182845904523536028747135266231 //float128 e1q = exp(1.); // Compile fails. // std::cout << e1q << std::endl; // // http://en.cppreference.com/w/cpp/language/typeid // The name()is implementation-dependent mangled, and may not be able to be output. // The example showing output using one of the implementations where type_info::name prints full type names; // filter through c++filt -t if using gcc or similar. //[float128_type_info const std::type_info& tifu128 = typeid(__float128); // OK. //std::cout << tifu128.name() << std::endl; // On GCC, aborts (because not printable string). //std::cout << typeid(__float128).name() << std::endl; // Aborts - // string name cannot be output. const std::type_info& tif128 = typeid(float128); // OK. std::cout << tif128.name() << std::endl; // OK. std::cout << typeid(float128).name() << std::endl; // OK. const std::type_info& tpi = typeid(pi1); // OK using GCC 6.1.1. // (from GCC 5 according to http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43622) std::cout << tpi.name() << std::endl; // OK, Output implementation-dependent mangled name: // N5boost14multiprecision6numberINS0_8backends16float128_backendELNS0_26expression_template_optionE0EEE //] [/float128_type_info] } catch (std::exception ex) { // Display details about why any exceptions are thrown. std::cout << "Thrown exception " << ex.what() << std::endl; } } // int main() /* [float128_output -std=c++11 or -std=c++17 don't work Floating-point type boost::float128_t is NOT available. Platform: Win32 Compiler: GNU C++ version 6.1.1 20160609 STL : GNU libstdc++ version 20160609 Boost : 1.62.0 GCC 6.1.1 20160609 Added -fext-numeric-literals to -std=gnu++11 -fext-numeric-literals -lquadmath Floating-point type boost::float128_t is available. std::numeric_limits::digits10 == 33 std::numeric_limits::max_digits10 == 36 Platform: Win32 Compiler: GNU C++ version 6.1.1 20160609 STL : GNU libstdc++ version 20160609 Boost : 1.62.0 GCC 6.1.1 20160609 1.77245385090551602729816748334114514 1.77245385090551602729816748334114514 1.77245385090551602729816748334114514 1.77245385090551602729816748334114514 N5boost14multiprecision6numberINS0_8backends16float128_backendELNS0_26expression_template_optionE0EEE N5boost14multiprecision6numberINS0_8backends16float128_backendELNS0_26expression_template_optionE0EEE N5boost14multiprecision6numberINS0_8backends16float128_backendELNS0_26expression_template_optionE0EEE Process returned 0 (0x0) execution time : 0.033 s Press any key to continue. //] [/float128_output] */