//---------------------------------------------------------------------------// // Copyright (c) 2013-2014 Kyle Lutz // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // // See http://boostorg.github.com/compute for more information. //---------------------------------------------------------------------------// #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include "perf.hpp" namespace compute = boost::compute; using compute::float2_; float rand_float() { return (float(rand()) / float(RAND_MAX)) * 1000.f; } void serial_cartesian_to_polar(const float *input, size_t n, float *output) { for(size_t i = 0; i < n; i++){ float x = input[i*2+0]; float y = input[i*2+1]; float magnitude = std::sqrt(x*x + y*y); float angle = std::atan2(y, x) * 180.f / M_PI; output[i*2+0] = magnitude; output[i*2+1] = angle; } } void serial_polar_to_cartesian(const float *input, size_t n, float *output) { for(size_t i = 0; i < n; i++){ float magnitude = input[i*2+0]; float angle = input[i*2+1]; float x = magnitude * cos(angle); float y = magnitude * sin(angle); output[i*2+0] = x; output[i*2+1] = y; } } // converts from cartesian coordinates (x, y) to polar coordinates (magnitude, angle) BOOST_COMPUTE_FUNCTION(float2_, cartesian_to_polar, (float2_ p), { float x = p.x; float y = p.y; float magnitude = sqrt(x*x + y*y); float angle = atan2(y, x) * 180.f / M_PI; return (float2)(magnitude, angle); }); // converts from polar coordinates (magnitude, angle) to cartesian coordinates (x, y) BOOST_COMPUTE_FUNCTION(float2_, polar_to_cartesian, (float2_ p), { float magnitude = p.x; float angle = p.y; float x = magnitude * cos(angle); float y = magnitude * sin(angle); return (float2)(x, y) }); int main(int argc, char *argv[]) { perf_parse_args(argc, argv); std::cout << "size: " << PERF_N << std::endl; // setup context and queue for the default device compute::device device = compute::system::default_device(); compute::context context(device); compute::command_queue queue(context, device); std::cout << "device: " << device.name() << std::endl; // create vector of random numbers on the host std::vector host_vector(PERF_N*2); std::generate(host_vector.begin(), host_vector.end(), rand_float); // create vector on the device and copy the data compute::vector device_vector(PERF_N, context); compute::copy_n( reinterpret_cast(&host_vector[0]), PERF_N, device_vector.begin(), queue ); perf_timer t; for(size_t trial = 0; trial < PERF_TRIALS; trial++){ t.start(); compute::transform( device_vector.begin(), device_vector.end(), device_vector.begin(), cartesian_to_polar, queue ); queue.finish(); t.stop(); } std::cout << "time: " << t.min_time() / 1e6 << " ms" << std::endl; // perform saxpy on host t.clear(); for(size_t trial = 0; trial < PERF_TRIALS; trial++){ t.start(); serial_cartesian_to_polar(&host_vector[0], PERF_N, &host_vector[0]); t.stop(); } std::cout << "host time: " << t.min_time() / 1e6 << " ms" << std::endl; std::vector device_data(PERF_N*2); compute::copy( device_vector.begin(), device_vector.end(), reinterpret_cast(&device_data[0]), queue ); for(size_t i = 0; i < PERF_N; i++){ float host_value = host_vector[i]; float device_value = device_data[i]; if(std::abs(device_value - host_value) > 1e-3){ std::cout << "ERROR: " << "value at " << i << " " << "device_value (" << device_value << ") " << "!= " << "host_value (" << host_value << ")" << std::endl; return -1; } } return 0; }