/* Unit testing for outcomes (C) 2013-2019 Niall Douglas (18 commits) Boost Software License - Version 1.0 - August 17th, 2003 Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #ifdef _MSC_VER #pragma warning(disable : 4702) // unreachable code #endif BOOST_OUTCOME_AUTO_TEST_CASE(works_outcome, "Tests that the outcome works as intended") { using namespace BOOST_OUTCOME_V2_NAMESPACE; static_assert(std::is_constructible, int>::value, "Sanity check that monad can be constructed from a value_type"); static_assert(!std::is_constructible>, int>::value, "Sanity check that outer monad can be constructed from an inner monad's value_type"); static_assert(!std::is_constructible>>, int>::value, "Sanity check that outer monad can be constructed from an inner inner monad's value_type"); static_assert(!std::is_constructible>>>, int>::value, "Sanity check that outer monad can be constructed from an inner inner monad's value_type"); static_assert(std::is_constructible, outcome>::value, "Sanity check that compatible monads can be constructed from one another"); static_assert(std::is_constructible>, outcome>::value, "Sanity check that outer monad can be constructed from a compatible monad"); static_assert(!std::is_constructible>>, outcome>::value, "Sanity check that outer monad can be constructed from a compatible monad up to two nestings deep"); static_assert(!std::is_constructible>>>, outcome>::value, "Sanity check that outer monad can be constructed from a compatible monad three or more nestings deep"); static_assert(!std::is_constructible, outcome>::value, "Sanity check that incompatible monads cannot be constructed from one another"); static_assert(std::is_constructible, outcome>::value, "Sanity check that all monads can be constructed from a void monad"); static_assert(std::is_constructible>, outcome>::value, "Sanity check that outer monad can be constructed from a compatible monad"); static_assert(std::is_constructible>>, outcome>::value, "Sanity check that outer monad can be constructed from a compatible monad up to two nestings deep"); static_assert(!std::is_constructible, outcome>::value, "Sanity check that incompatible monads cannot be constructed from one another"); static_assert(std::is_void::value_type>::value, "Sanity check that result has a void value_type"); static_assert(std::is_void::error_type>::value, "Sanity check that result has a void error_type"); // static_assert(std::is_void::exception_type>::value, "Sanity check that outcome has a void exception_type"); static_assert(std::is_same::value_type, int>::value, "Sanity check that outcome has a int value_type"); static_assert(std::is_same::error_type, boost::system::error_code>::value, "Sanity check that outcome has a error_code error_type"); static_assert(std::is_same::exception_type, boost::exception_ptr>::value, "Sanity check that outcome has a exception_ptr exception_type"); { // errored int outcome m(boost::system::errc::bad_address); BOOST_CHECK(!m); BOOST_CHECK(!m.has_value()); BOOST_CHECK(m.has_error()); BOOST_CHECK(!m.has_exception()); BOOST_CHECK_THROW(m.value(), boost::system::system_error); BOOST_CHECK_NO_THROW(m.error()); BOOST_CHECK_THROW(m.exception(), bad_outcome_access); BOOST_CHECK_THROW(boost::rethrow_exception(m.failure()), boost::system::system_error); } { // errored void outcome m(boost::system::errc::bad_address); BOOST_CHECK(!m); BOOST_CHECK(!m.has_value()); BOOST_CHECK(m.has_error()); BOOST_CHECK(!m.has_exception()); BOOST_CHECK_THROW(([&m]() -> void { return m.value(); }()), boost::system::system_error); BOOST_CHECK_NO_THROW(m.error()); BOOST_CHECK_THROW(m.exception(), bad_outcome_access); BOOST_CHECK_THROW(boost::rethrow_exception(m.failure()), boost::system::system_error); } { // valued int outcome m(5); BOOST_CHECK(m); BOOST_CHECK(m.has_value()); BOOST_CHECK(!m.has_error()); BOOST_CHECK(!m.has_exception()); BOOST_CHECK(m.value() == 5); m.value() = 6; BOOST_CHECK(m.value() == 6); BOOST_CHECK_THROW(m.error(), bad_outcome_access); BOOST_CHECK_THROW(m.exception(), bad_outcome_access); BOOST_CHECK(!m.failure()); } { // moves do not clear state outcome m("niall"); BOOST_CHECK(m); BOOST_CHECK(m.has_value()); BOOST_CHECK(!m.has_error()); BOOST_CHECK(!m.has_exception()); BOOST_CHECK(m.value() == "niall"); m.value() = "NIALL"; BOOST_CHECK(m.value() == "NIALL"); auto temp(std::move(m).value()); BOOST_CHECK(temp == "NIALL"); BOOST_CHECK(m.value().empty()); // NOLINT } { // valued void outcome m(in_place_type); BOOST_CHECK(m); BOOST_CHECK(m.has_value()); BOOST_CHECK(!m.has_error()); BOOST_CHECK(!m.has_exception()); BOOST_CHECK_NO_THROW(m.value()); // works, but type returned is unusable BOOST_CHECK_THROW(m.error(), bad_outcome_access); BOOST_CHECK_THROW(m.exception(), bad_outcome_access); BOOST_CHECK(!m.failure()); } { // errored boost::system::error_code ec(5, boost::system::system_category()); outcome m(ec); BOOST_CHECK(!m); BOOST_CHECK(!m.has_value()); BOOST_CHECK(m.has_error()); BOOST_CHECK(!m.has_exception()); BOOST_CHECK_THROW(m.value(), boost::system::system_error); BOOST_CHECK(m.error() == ec); BOOST_CHECK_THROW(m.exception(), bad_outcome_access); #ifndef BOOST_NO_EXCEPTIONS BOOST_CHECK(m.failure()); try { boost::rethrow_exception(m.failure()); } catch(const boost::system::system_error &ex) { BOOST_CHECK(ex.code() == ec); BOOST_CHECK(ex.code().value() == 5); } #endif } #if !defined(__APPLE__) || defined(__cpp_exceptions) { // excepted boost::system::error_code ec(5, boost::system::system_category()); auto e = boost::copy_exception(boost::system::system_error(ec)); // NOLINT outcome m(e); BOOST_CHECK(!m); BOOST_CHECK(!m.has_value()); BOOST_CHECK(!m.has_error()); BOOST_CHECK(m.has_exception()); BOOST_CHECK_THROW(m.value(), boost::system::system_error); BOOST_CHECK_THROW(m.error(), bad_outcome_access); BOOST_CHECK(m.exception() == e); #ifndef BOOST_NO_EXCEPTIONS BOOST_CHECK(m.failure()); try { boost::rethrow_exception(m.failure()); } catch(const boost::system::system_error &ex) { BOOST_CHECK(ex.code() == ec); BOOST_CHECK(ex.code().value() == 5); } #endif } { // custom error type struct Foo { }; auto e = boost::copy_exception(Foo()); outcome m(e); BOOST_CHECK(!m); BOOST_CHECK(!m.has_value()); BOOST_CHECK(!m.has_error()); BOOST_CHECK(m.has_exception()); BOOST_CHECK_THROW(m.value(), Foo); BOOST_CHECK_THROW(m.error(), bad_outcome_access); BOOST_CHECK(m.exception() == e); } { // outcome should work boost::system::error_code ec(5, boost::system::system_category()); auto e = boost::copy_exception(boost::system::system_error(ec)); outcome m(e); BOOST_CHECK(!m); BOOST_CHECK(!m.has_value()); BOOST_CHECK(!m.has_error()); BOOST_CHECK(m.has_exception()); } #endif { outcome a(5); outcome b(make_error_code(boost::system::errc::invalid_argument)); std::cout << sizeof(a) << std::endl; // 40 bytes a.assume_value(); b.assume_error(); #ifndef BOOST_NO_EXCEPTIONS try { b.value(); std::cerr << "fail" << std::endl; std::terminate(); } catch(const boost::system::system_error & /*unused*/) { } #endif static_assert(!std::is_default_constructible::value, ""); static_assert(!std::is_nothrow_default_constructible::value, ""); static_assert(std::is_copy_constructible::value, ""); static_assert(!std::is_trivially_copy_constructible::value, ""); static_assert(std::is_nothrow_copy_constructible::value, ""); static_assert(std::is_copy_assignable::value, ""); static_assert(!std::is_trivially_copy_assignable::value, ""); static_assert(std::is_nothrow_copy_assignable::value, ""); static_assert(!std::is_trivially_destructible::value, ""); static_assert(std::is_nothrow_destructible::value, ""); // Test void compiles outcome c(in_place_type); outcome c2(c); (void) c2; // Test int, void compiles outcome d(in_place_type); } { // Can only be constructed via multiple args struct udt3 { udt3() = delete; udt3(udt3 &&) = delete; udt3(const udt3 &) = delete; udt3 &operator=(udt3 &&) = delete; udt3 &operator=(const udt3 &) = delete; explicit udt3(int /*unused*/, const char * /*unused*/, std::nullptr_t /*unused*/) {} ~udt3() = default; }; // Test a udt which can only be constructed in place compiles outcome g(in_place_type, 5, static_cast("niall"), nullptr); // Does converting inplace construction also work? outcome h(5, static_cast("niall"), nullptr); outcome i(ENOMEM, boost::system::generic_category()); BOOST_CHECK(h.has_value()); BOOST_CHECK(i.has_error()); } }