// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #include #include #include #include "DetourNavMesh.h" #include "DetourCommon.h" #include "DetourMath.h" #include "DetourNavMeshBuilder.h" #include "DetourAlloc.h" #include "DetourAssert.h" static unsigned short MESH_NULL_IDX = 0xffff; struct BVItem { unsigned short bmin[3]; unsigned short bmax[3]; int i; }; static int compareItemX(const void* va, const void* vb) { const BVItem* a = (const BVItem*)va; const BVItem* b = (const BVItem*)vb; if (a->bmin[0] < b->bmin[0]) return -1; if (a->bmin[0] > b->bmin[0]) return 1; return 0; } static int compareItemY(const void* va, const void* vb) { const BVItem* a = (const BVItem*)va; const BVItem* b = (const BVItem*)vb; if (a->bmin[1] < b->bmin[1]) return -1; if (a->bmin[1] > b->bmin[1]) return 1; return 0; } static int compareItemZ(const void* va, const void* vb) { const BVItem* a = (const BVItem*)va; const BVItem* b = (const BVItem*)vb; if (a->bmin[2] < b->bmin[2]) return -1; if (a->bmin[2] > b->bmin[2]) return 1; return 0; } static void calcExtends(BVItem* items, const int /*nitems*/, const int imin, const int imax, unsigned short* bmin, unsigned short* bmax) { bmin[0] = items[imin].bmin[0]; bmin[1] = items[imin].bmin[1]; bmin[2] = items[imin].bmin[2]; bmax[0] = items[imin].bmax[0]; bmax[1] = items[imin].bmax[1]; bmax[2] = items[imin].bmax[2]; for (int i = imin+1; i < imax; ++i) { const BVItem& it = items[i]; if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0]; if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1]; if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2]; if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0]; if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1]; if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2]; } } inline int longestAxis(unsigned short x, unsigned short y, unsigned short z) { int axis = 0; unsigned short maxVal = x; if (y > maxVal) { axis = 1; maxVal = y; } if (z > maxVal) { axis = 2; } return axis; } static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtBVNode* nodes) { int inum = imax - imin; int icur = curNode; dtBVNode& node = nodes[curNode++]; if (inum == 1) { // Leaf node.bmin[0] = items[imin].bmin[0]; node.bmin[1] = items[imin].bmin[1]; node.bmin[2] = items[imin].bmin[2]; node.bmax[0] = items[imin].bmax[0]; node.bmax[1] = items[imin].bmax[1]; node.bmax[2] = items[imin].bmax[2]; node.i = items[imin].i; } else { // Split calcExtends(items, nitems, imin, imax, node.bmin, node.bmax); int axis = longestAxis(node.bmax[0] - node.bmin[0], node.bmax[1] - node.bmin[1], node.bmax[2] - node.bmin[2]); if (axis == 0) { // Sort along x-axis qsort(items+imin, inum, sizeof(BVItem), compareItemX); } else if (axis == 1) { // Sort along y-axis qsort(items+imin, inum, sizeof(BVItem), compareItemY); } else { // Sort along z-axis qsort(items+imin, inum, sizeof(BVItem), compareItemZ); } int isplit = imin+inum/2; // Left subdivide(items, nitems, imin, isplit, curNode, nodes); // Right subdivide(items, nitems, isplit, imax, curNode, nodes); int iescape = curNode - icur; // Negative index means escape. node.i = -iescape; } } static int createBVTree(dtNavMeshCreateParams* params, dtBVNode* nodes, int /*nnodes*/) { // Build tree float quantFactor = 1 / params->cs; BVItem* items = (BVItem*)dtAlloc(sizeof(BVItem)*params->polyCount, DT_ALLOC_TEMP); for (int i = 0; i < params->polyCount; i++) { BVItem& it = items[i]; it.i = i; // Calc polygon bounds. Use detail meshes if available. if (params->detailMeshes) { int vb = (int)params->detailMeshes[i*4+0]; int ndv = (int)params->detailMeshes[i*4+1]; float bmin[3]; float bmax[3]; const float* dv = ¶ms->detailVerts[vb*3]; dtVcopy(bmin, dv); dtVcopy(bmax, dv); for (int j = 1; j < ndv; j++) { dtVmin(bmin, &dv[j * 3]); dtVmax(bmax, &dv[j * 3]); } // BV-tree uses cs for all dimensions it.bmin[0] = (unsigned short)dtClamp((int)((bmin[0] - params->bmin[0])*quantFactor), 0, 0xffff); it.bmin[1] = (unsigned short)dtClamp((int)((bmin[1] - params->bmin[1])*quantFactor), 0, 0xffff); it.bmin[2] = (unsigned short)dtClamp((int)((bmin[2] - params->bmin[2])*quantFactor), 0, 0xffff); it.bmax[0] = (unsigned short)dtClamp((int)((bmax[0] - params->bmin[0])*quantFactor), 0, 0xffff); it.bmax[1] = (unsigned short)dtClamp((int)((bmax[1] - params->bmin[1])*quantFactor), 0, 0xffff); it.bmax[2] = (unsigned short)dtClamp((int)((bmax[2] - params->bmin[2])*quantFactor), 0, 0xffff); } else { const unsigned short* p = ¶ms->polys[i*params->nvp * 2]; it.bmin[0] = it.bmax[0] = params->verts[p[0] * 3 + 0]; it.bmin[1] = it.bmax[1] = params->verts[p[0] * 3 + 1]; it.bmin[2] = it.bmax[2] = params->verts[p[0] * 3 + 2]; for (int j = 1; j < params->nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; unsigned short x = params->verts[p[j] * 3 + 0]; unsigned short y = params->verts[p[j] * 3 + 1]; unsigned short z = params->verts[p[j] * 3 + 2]; if (x < it.bmin[0]) it.bmin[0] = x; if (y < it.bmin[1]) it.bmin[1] = y; if (z < it.bmin[2]) it.bmin[2] = z; if (x > it.bmax[0]) it.bmax[0] = x; if (y > it.bmax[1]) it.bmax[1] = y; if (z > it.bmax[2]) it.bmax[2] = z; } // Remap y it.bmin[1] = (unsigned short)dtMathFloorf((float)it.bmin[1] * params->ch / params->cs); it.bmax[1] = (unsigned short)dtMathCeilf((float)it.bmax[1] * params->ch / params->cs); } } int curNode = 0; subdivide(items, params->polyCount, 0, params->polyCount, curNode, nodes); dtFree(items); return curNode; } static unsigned char classifyOffMeshPoint(const float* pt, const float* bmin, const float* bmax) { static const unsigned char XP = 1<<0; static const unsigned char ZP = 1<<1; static const unsigned char XM = 1<<2; static const unsigned char ZM = 1<<3; unsigned char outcode = 0; outcode |= (pt[0] >= bmax[0]) ? XP : 0; outcode |= (pt[2] >= bmax[2]) ? ZP : 0; outcode |= (pt[0] < bmin[0]) ? XM : 0; outcode |= (pt[2] < bmin[2]) ? ZM : 0; switch (outcode) { case XP: return 0; case XP|ZP: return 1; case ZP: return 2; case XM|ZP: return 3; case XM: return 4; case XM|ZM: return 5; case ZM: return 6; case XP|ZM: return 7; }; return 0xff; } // TODO: Better error handling. /// @par /// /// The output data array is allocated using the detour allocator (dtAlloc()). The method /// used to free the memory will be determined by how the tile is added to the navigation /// mesh. /// /// @see dtNavMesh, dtNavMesh::addTile() bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize) { if (params->nvp > DT_VERTS_PER_POLYGON) return false; if (params->vertCount >= 0xffff) return false; if (!params->vertCount || !params->verts) return false; if (!params->polyCount || !params->polys) return false; const int nvp = params->nvp; // Classify off-mesh connection points. We store only the connections // whose start point is inside the tile. unsigned char* offMeshConClass = 0; int storedOffMeshConCount = 0; int offMeshConLinkCount = 0; if (params->offMeshConCount > 0) { offMeshConClass = (unsigned char*)dtAlloc(sizeof(unsigned char)*params->offMeshConCount*2, DT_ALLOC_TEMP); if (!offMeshConClass) return false; // Find tight heigh bounds, used for culling out off-mesh start locations. float hmin = FLT_MAX; float hmax = -FLT_MAX; if (params->detailVerts && params->detailVertsCount) { for (int i = 0; i < params->detailVertsCount; ++i) { const float h = params->detailVerts[i*3+1]; hmin = dtMin(hmin,h); hmax = dtMax(hmax,h); } } else { for (int i = 0; i < params->vertCount; ++i) { const unsigned short* iv = ¶ms->verts[i*3]; const float h = params->bmin[1] + iv[1] * params->ch; hmin = dtMin(hmin,h); hmax = dtMax(hmax,h); } } hmin -= params->walkableClimb; hmax += params->walkableClimb; float bmin[3], bmax[3]; dtVcopy(bmin, params->bmin); dtVcopy(bmax, params->bmax); bmin[1] = hmin; bmax[1] = hmax; for (int i = 0; i < params->offMeshConCount; ++i) { const float* p0 = ¶ms->offMeshConVerts[(i*2+0)*3]; const float* p1 = ¶ms->offMeshConVerts[(i*2+1)*3]; offMeshConClass[i*2+0] = classifyOffMeshPoint(p0, bmin, bmax); offMeshConClass[i*2+1] = classifyOffMeshPoint(p1, bmin, bmax); // Zero out off-mesh start positions which are not even potentially touching the mesh. if (offMeshConClass[i*2+0] == 0xff) { if (p0[1] < bmin[1] || p0[1] > bmax[1]) offMeshConClass[i*2+0] = 0; } // Cound how many links should be allocated for off-mesh connections. if (offMeshConClass[i*2+0] == 0xff) offMeshConLinkCount++; if (offMeshConClass[i*2+1] == 0xff) offMeshConLinkCount++; if (offMeshConClass[i*2+0] == 0xff) storedOffMeshConCount++; } } // Off-mesh connectionss are stored as polygons, adjust values. const int totPolyCount = params->polyCount + storedOffMeshConCount; const int totVertCount = params->vertCount + storedOffMeshConCount*2; // Find portal edges which are at tile borders. int edgeCount = 0; int portalCount = 0; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*2*nvp]; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; edgeCount++; if (p[nvp+j] & 0x8000) { unsigned short dir = p[nvp+j] & 0xf; if (dir != 0xf) portalCount++; } } } const int maxLinkCount = edgeCount + portalCount*2 + offMeshConLinkCount*2; // Find unique detail vertices. int uniqueDetailVertCount = 0; int detailTriCount = 0; if (params->detailMeshes) { // Has detail mesh, count unique detail vertex count and use input detail tri count. detailTriCount = params->detailTriCount; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*nvp*2]; int ndv = params->detailMeshes[i*4+1]; int nv = 0; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; nv++; } ndv -= nv; uniqueDetailVertCount += ndv; } } else { // No input detail mesh, build detail mesh from nav polys. uniqueDetailVertCount = 0; // No extra detail verts. detailTriCount = 0; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*nvp*2]; int nv = 0; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; nv++; } detailTriCount += nv-2; } } // Calculate data size const int headerSize = dtAlign4(sizeof(dtMeshHeader)); const int vertsSize = dtAlign4(sizeof(float)*3*totVertCount); const int polysSize = dtAlign4(sizeof(dtPoly)*totPolyCount); const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount); const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount); const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount); const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount); const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0; const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount); const int dataSize = headerSize + vertsSize + polysSize + linksSize + detailMeshesSize + detailVertsSize + detailTrisSize + bvTreeSize + offMeshConsSize; unsigned char* data = (unsigned char*)dtAlloc(sizeof(unsigned char)*dataSize, DT_ALLOC_PERM); if (!data) { dtFree(offMeshConClass); return false; } memset(data, 0, dataSize); unsigned char* d = data; dtMeshHeader* header = dtGetThenAdvanceBufferPointer(d, headerSize); float* navVerts = dtGetThenAdvanceBufferPointer(d, vertsSize); dtPoly* navPolys = dtGetThenAdvanceBufferPointer(d, polysSize); d += linksSize; // Ignore links; just leave enough space for them. They'll be created on load. dtPolyDetail* navDMeshes = dtGetThenAdvanceBufferPointer(d, detailMeshesSize); float* navDVerts = dtGetThenAdvanceBufferPointer(d, detailVertsSize); unsigned char* navDTris = dtGetThenAdvanceBufferPointer(d, detailTrisSize); dtBVNode* navBvtree = dtGetThenAdvanceBufferPointer(d, bvTreeSize); dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer(d, offMeshConsSize); // Store header header->magic = DT_NAVMESH_MAGIC; header->version = DT_NAVMESH_VERSION; header->x = params->tileX; header->y = params->tileY; header->layer = params->tileLayer; header->userId = params->userId; header->polyCount = totPolyCount; header->vertCount = totVertCount; header->maxLinkCount = maxLinkCount; dtVcopy(header->bmin, params->bmin); dtVcopy(header->bmax, params->bmax); header->detailMeshCount = params->polyCount; header->detailVertCount = uniqueDetailVertCount; header->detailTriCount = detailTriCount; header->bvQuantFactor = 1.0f / params->cs; header->offMeshBase = params->polyCount; header->walkableHeight = params->walkableHeight; header->walkableRadius = params->walkableRadius; header->walkableClimb = params->walkableClimb; header->offMeshConCount = storedOffMeshConCount; header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0; const int offMeshVertsBase = params->vertCount; const int offMeshPolyBase = params->polyCount; // Store vertices // Mesh vertices for (int i = 0; i < params->vertCount; ++i) { const unsigned short* iv = ¶ms->verts[i*3]; float* v = &navVerts[i*3]; v[0] = params->bmin[0] + iv[0] * params->cs; v[1] = params->bmin[1] + iv[1] * params->ch; v[2] = params->bmin[2] + iv[2] * params->cs; } // Off-mesh link vertices. int n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { const float* linkv = ¶ms->offMeshConVerts[i*2*3]; float* v = &navVerts[(offMeshVertsBase + n*2)*3]; dtVcopy(&v[0], &linkv[0]); dtVcopy(&v[3], &linkv[3]); n++; } } // Store polygons // Mesh polys const unsigned short* src = params->polys; for (int i = 0; i < params->polyCount; ++i) { dtPoly* p = &navPolys[i]; p->vertCount = 0; p->flags = params->polyFlags[i]; p->setArea(params->polyAreas[i]); p->setType(DT_POLYTYPE_GROUND); for (int j = 0; j < nvp; ++j) { if (src[j] == MESH_NULL_IDX) break; p->verts[j] = src[j]; if (src[nvp+j] & 0x8000) { // Border or portal edge. unsigned short dir = src[nvp+j] & 0xf; if (dir == 0xf) // Border p->neis[j] = 0; else if (dir == 0) // Portal x- p->neis[j] = DT_EXT_LINK | 4; else if (dir == 1) // Portal z+ p->neis[j] = DT_EXT_LINK | 2; else if (dir == 2) // Portal x+ p->neis[j] = DT_EXT_LINK | 0; else if (dir == 3) // Portal z- p->neis[j] = DT_EXT_LINK | 6; } else { // Normal connection p->neis[j] = src[nvp+j]+1; } p->vertCount++; } src += nvp*2; } // Off-mesh connection vertices. n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { dtPoly* p = &navPolys[offMeshPolyBase+n]; p->vertCount = 2; p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0); p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1); p->flags = params->offMeshConFlags[i]; p->setArea(params->offMeshConAreas[i]); p->setType(DT_POLYTYPE_OFFMESH_CONNECTION); n++; } } // Store detail meshes and vertices. // The nav polygon vertices are stored as the first vertices on each mesh. // We compress the mesh data by skipping them and using the navmesh coordinates. if (params->detailMeshes) { unsigned short vbase = 0; for (int i = 0; i < params->polyCount; ++i) { dtPolyDetail& dtl = navDMeshes[i]; const int vb = (int)params->detailMeshes[i*4+0]; const int ndv = (int)params->detailMeshes[i*4+1]; const int nv = navPolys[i].vertCount; dtl.vertBase = (unsigned int)vbase; dtl.vertCount = (unsigned char)(ndv-nv); dtl.triBase = (unsigned int)params->detailMeshes[i*4+2]; dtl.triCount = (unsigned char)params->detailMeshes[i*4+3]; // Copy vertices except the first 'nv' verts which are equal to nav poly verts. if (ndv-nv) { memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv)); vbase += (unsigned short)(ndv-nv); } } // Store triangles. memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount); } else { // Create dummy detail mesh by triangulating polys. int tbase = 0; for (int i = 0; i < params->polyCount; ++i) { dtPolyDetail& dtl = navDMeshes[i]; const int nv = navPolys[i].vertCount; dtl.vertBase = 0; dtl.vertCount = 0; dtl.triBase = (unsigned int)tbase; dtl.triCount = (unsigned char)(nv-2); // Triangulate polygon (local indices). for (int j = 2; j < nv; ++j) { unsigned char* t = &navDTris[tbase*4]; t[0] = 0; t[1] = (unsigned char)(j-1); t[2] = (unsigned char)j; // Bit for each edge that belongs to poly boundary. t[3] = (1<<2); if (j == 2) t[3] |= (1<<0); if (j == nv-1) t[3] |= (1<<4); tbase++; } } } // Store and create BVtree. if (params->buildBvTree) { createBVTree(params, navBvtree, 2*params->polyCount); } // Store Off-Mesh connections. n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { dtOffMeshConnection* con = &offMeshCons[n]; con->poly = (unsigned short)(offMeshPolyBase + n); // Copy connection end-points. const float* endPts = ¶ms->offMeshConVerts[i*2*3]; dtVcopy(&con->pos[0], &endPts[0]); dtVcopy(&con->pos[3], &endPts[3]); con->rad = params->offMeshConRad[i]; con->flags = params->offMeshConDir[i] ? DT_OFFMESH_CON_BIDIR : 0; con->side = offMeshConClass[i*2+1]; if (params->offMeshConUserID) con->userId = params->offMeshConUserID[i]; n++; } } dtFree(offMeshConClass); *outData = data; *outDataSize = dataSize; return true; } bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int /*dataSize*/) { dtMeshHeader* header = (dtMeshHeader*)data; int swappedMagic = DT_NAVMESH_MAGIC; int swappedVersion = DT_NAVMESH_VERSION; dtSwapEndian(&swappedMagic); dtSwapEndian(&swappedVersion); if ((header->magic != DT_NAVMESH_MAGIC || header->version != DT_NAVMESH_VERSION) && (header->magic != swappedMagic || header->version != swappedVersion)) { return false; } dtSwapEndian(&header->magic); dtSwapEndian(&header->version); dtSwapEndian(&header->x); dtSwapEndian(&header->y); dtSwapEndian(&header->layer); dtSwapEndian(&header->userId); dtSwapEndian(&header->polyCount); dtSwapEndian(&header->vertCount); dtSwapEndian(&header->maxLinkCount); dtSwapEndian(&header->detailMeshCount); dtSwapEndian(&header->detailVertCount); dtSwapEndian(&header->detailTriCount); dtSwapEndian(&header->bvNodeCount); dtSwapEndian(&header->offMeshConCount); dtSwapEndian(&header->offMeshBase); dtSwapEndian(&header->walkableHeight); dtSwapEndian(&header->walkableRadius); dtSwapEndian(&header->walkableClimb); dtSwapEndian(&header->bmin[0]); dtSwapEndian(&header->bmin[1]); dtSwapEndian(&header->bmin[2]); dtSwapEndian(&header->bmax[0]); dtSwapEndian(&header->bmax[1]); dtSwapEndian(&header->bmax[2]); dtSwapEndian(&header->bvQuantFactor); // Freelist index and pointers are updated when tile is added, no need to swap. return true; } /// @par /// /// @warning This function assumes that the header is in the correct endianess already. /// Call #dtNavMeshHeaderSwapEndian() first on the data if the data is expected to be in wrong endianess /// to start with. Call #dtNavMeshHeaderSwapEndian() after the data has been swapped if converting from /// native to foreign endianess. bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/) { // Make sure the data is in right format. dtMeshHeader* header = (dtMeshHeader*)data; if (header->magic != DT_NAVMESH_MAGIC) return false; if (header->version != DT_NAVMESH_VERSION) return false; // Patch header pointers. const int headerSize = dtAlign4(sizeof(dtMeshHeader)); const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); unsigned char* d = data + headerSize; float* verts = dtGetThenAdvanceBufferPointer(d, vertsSize); dtPoly* polys = dtGetThenAdvanceBufferPointer(d, polysSize); d += linksSize; // Ignore links; they technically should be endian-swapped but all their data is overwritten on load anyway. //dtLink* links = dtGetThenAdvanceBufferPointer(d, linksSize); dtPolyDetail* detailMeshes = dtGetThenAdvanceBufferPointer(d, detailMeshesSize); float* detailVerts = dtGetThenAdvanceBufferPointer(d, detailVertsSize); d += detailTrisSize; // Ignore detail tris; single bytes can't be endian-swapped. //unsigned char* detailTris = dtGetThenAdvanceBufferPointer(d, detailTrisSize); dtBVNode* bvTree = dtGetThenAdvanceBufferPointer(d, bvtreeSize); dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer(d, offMeshLinksSize); // Vertices for (int i = 0; i < header->vertCount*3; ++i) { dtSwapEndian(&verts[i]); } // Polys for (int i = 0; i < header->polyCount; ++i) { dtPoly* p = &polys[i]; // poly->firstLink is update when tile is added, no need to swap. for (int j = 0; j < DT_VERTS_PER_POLYGON; ++j) { dtSwapEndian(&p->verts[j]); dtSwapEndian(&p->neis[j]); } dtSwapEndian(&p->flags); } // Links are rebuild when tile is added, no need to swap. // Detail meshes for (int i = 0; i < header->detailMeshCount; ++i) { dtPolyDetail* pd = &detailMeshes[i]; dtSwapEndian(&pd->vertBase); dtSwapEndian(&pd->triBase); } // Detail verts for (int i = 0; i < header->detailVertCount*3; ++i) { dtSwapEndian(&detailVerts[i]); } // BV-tree for (int i = 0; i < header->bvNodeCount; ++i) { dtBVNode* node = &bvTree[i]; for (int j = 0; j < 3; ++j) { dtSwapEndian(&node->bmin[j]); dtSwapEndian(&node->bmax[j]); } dtSwapEndian(&node->i); } // Off-mesh Connections. for (int i = 0; i < header->offMeshConCount; ++i) { dtOffMeshConnection* con = &offMeshCons[i]; for (int j = 0; j < 6; ++j) dtSwapEndian(&con->pos[j]); dtSwapEndian(&con->rad); dtSwapEndian(&con->poly); } return true; }