// // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #ifndef DETOURCOMMON_H #define DETOURCOMMON_H #include "DetourMath.h" #include /** @defgroup detour Detour Members in this module are used to create, manipulate, and query navigation meshes. @note This is a summary list of members. Use the index or search feature to find minor members. */ /// @name General helper functions /// @{ /// Used to ignore a function parameter. VS complains about unused parameters /// and this silences the warning. /// @param [in] _ Unused parameter template void dtIgnoreUnused(const T&) { } /// Swaps the values of the two parameters. /// @param[in,out] a Value A /// @param[in,out] b Value B template inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; } /// Returns the minimum of two values. /// @param[in] a Value A /// @param[in] b Value B /// @return The minimum of the two values. template inline T dtMin(T a, T b) { return a < b ? a : b; } /// Returns the maximum of two values. /// @param[in] a Value A /// @param[in] b Value B /// @return The maximum of the two values. template inline T dtMax(T a, T b) { return a > b ? a : b; } /// Returns the absolute value. /// @param[in] a The value. /// @return The absolute value of the specified value. template inline T dtAbs(T a) { return a < 0 ? -a : a; } /// Returns the square of the value. /// @param[in] a The value. /// @return The square of the value. template inline T dtSqr(T a) { return a*a; } /// Clamps the value to the specified range. /// @param[in] v The value to clamp. /// @param[in] mn The minimum permitted return value. /// @param[in] mx The maximum permitted return value. /// @return The value, clamped to the specified range. template inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); } /// @} /// @name Vector helper functions. /// @{ /// Derives the cross product of two vectors. (@p v1 x @p v2) /// @param[out] dest The cross product. [(x, y, z)] /// @param[in] v1 A Vector [(x, y, z)] /// @param[in] v2 A vector [(x, y, z)] inline void dtVcross(float* dest, const float* v1, const float* v2) { dest[0] = v1[1]*v2[2] - v1[2]*v2[1]; dest[1] = v1[2]*v2[0] - v1[0]*v2[2]; dest[2] = v1[0]*v2[1] - v1[1]*v2[0]; } /// Derives the dot product of two vectors. (@p v1 . @p v2) /// @param[in] v1 A Vector [(x, y, z)] /// @param[in] v2 A vector [(x, y, z)] /// @return The dot product. inline float dtVdot(const float* v1, const float* v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } /// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s)) /// @param[out] dest The result vector. [(x, y, z)] /// @param[in] v1 The base vector. [(x, y, z)] /// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)] /// @param[in] s The amount to scale @p v2 by before adding to @p v1. inline void dtVmad(float* dest, const float* v1, const float* v2, const float s) { dest[0] = v1[0]+v2[0]*s; dest[1] = v1[1]+v2[1]*s; dest[2] = v1[2]+v2[2]*s; } /// Performs a linear interpolation between two vectors. (@p v1 toward @p v2) /// @param[out] dest The result vector. [(x, y, x)] /// @param[in] v1 The starting vector. /// @param[in] v2 The destination vector. /// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0] inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t) { dest[0] = v1[0]+(v2[0]-v1[0])*t; dest[1] = v1[1]+(v2[1]-v1[1])*t; dest[2] = v1[2]+(v2[2]-v1[2])*t; } /// Performs a vector addition. (@p v1 + @p v2) /// @param[out] dest The result vector. [(x, y, z)] /// @param[in] v1 The base vector. [(x, y, z)] /// @param[in] v2 The vector to add to @p v1. [(x, y, z)] inline void dtVadd(float* dest, const float* v1, const float* v2) { dest[0] = v1[0]+v2[0]; dest[1] = v1[1]+v2[1]; dest[2] = v1[2]+v2[2]; } /// Performs a vector subtraction. (@p v1 - @p v2) /// @param[out] dest The result vector. [(x, y, z)] /// @param[in] v1 The base vector. [(x, y, z)] /// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)] inline void dtVsub(float* dest, const float* v1, const float* v2) { dest[0] = v1[0]-v2[0]; dest[1] = v1[1]-v2[1]; dest[2] = v1[2]-v2[2]; } /// Scales the vector by the specified value. (@p v * @p t) /// @param[out] dest The result vector. [(x, y, z)] /// @param[in] v The vector to scale. [(x, y, z)] /// @param[in] t The scaling factor. inline void dtVscale(float* dest, const float* v, const float t) { dest[0] = v[0]*t; dest[1] = v[1]*t; dest[2] = v[2]*t; } /// Selects the minimum value of each element from the specified vectors. /// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)] /// @param[in] v A vector. [(x, y, z)] inline void dtVmin(float* mn, const float* v) { mn[0] = dtMin(mn[0], v[0]); mn[1] = dtMin(mn[1], v[1]); mn[2] = dtMin(mn[2], v[2]); } /// Selects the maximum value of each element from the specified vectors. /// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)] /// @param[in] v A vector. [(x, y, z)] inline void dtVmax(float* mx, const float* v) { mx[0] = dtMax(mx[0], v[0]); mx[1] = dtMax(mx[1], v[1]); mx[2] = dtMax(mx[2], v[2]); } /// Sets the vector elements to the specified values. /// @param[out] dest The result vector. [(x, y, z)] /// @param[in] x The x-value of the vector. /// @param[in] y The y-value of the vector. /// @param[in] z The z-value of the vector. inline void dtVset(float* dest, const float x, const float y, const float z) { dest[0] = x; dest[1] = y; dest[2] = z; } /// Performs a vector copy. /// @param[out] dest The result. [(x, y, z)] /// @param[in] a The vector to copy. [(x, y, z)] inline void dtVcopy(float* dest, const float* a) { dest[0] = a[0]; dest[1] = a[1]; dest[2] = a[2]; } /// Derives the scalar length of the vector. /// @param[in] v The vector. [(x, y, z)] /// @return The scalar length of the vector. inline float dtVlen(const float* v) { return dtMathSqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); } /// Derives the square of the scalar length of the vector. (len * len) /// @param[in] v The vector. [(x, y, z)] /// @return The square of the scalar length of the vector. inline float dtVlenSqr(const float* v) { return v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; } /// Returns the distance between two points. /// @param[in] v1 A point. [(x, y, z)] /// @param[in] v2 A point. [(x, y, z)] /// @return The distance between the two points. inline float dtVdist(const float* v1, const float* v2) { const float dx = v2[0] - v1[0]; const float dy = v2[1] - v1[1]; const float dz = v2[2] - v1[2]; return dtMathSqrtf(dx*dx + dy*dy + dz*dz); } /// Returns the square of the distance between two points. /// @param[in] v1 A point. [(x, y, z)] /// @param[in] v2 A point. [(x, y, z)] /// @return The square of the distance between the two points. inline float dtVdistSqr(const float* v1, const float* v2) { const float dx = v2[0] - v1[0]; const float dy = v2[1] - v1[1]; const float dz = v2[2] - v1[2]; return dx*dx + dy*dy + dz*dz; } /// Derives the distance between the specified points on the xz-plane. /// @param[in] v1 A point. [(x, y, z)] /// @param[in] v2 A point. [(x, y, z)] /// @return The distance between the point on the xz-plane. /// /// The vectors are projected onto the xz-plane, so the y-values are ignored. inline float dtVdist2D(const float* v1, const float* v2) { const float dx = v2[0] - v1[0]; const float dz = v2[2] - v1[2]; return dtMathSqrtf(dx*dx + dz*dz); } /// Derives the square of the distance between the specified points on the xz-plane. /// @param[in] v1 A point. [(x, y, z)] /// @param[in] v2 A point. [(x, y, z)] /// @return The square of the distance between the point on the xz-plane. inline float dtVdist2DSqr(const float* v1, const float* v2) { const float dx = v2[0] - v1[0]; const float dz = v2[2] - v1[2]; return dx*dx + dz*dz; } /// Normalizes the vector. /// @param[in,out] v The vector to normalize. [(x, y, z)] inline void dtVnormalize(float* v) { float d = 1.0f / dtMathSqrtf(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2])); v[0] *= d; v[1] *= d; v[2] *= d; } /// Performs a 'sloppy' colocation check of the specified points. /// @param[in] p0 A point. [(x, y, z)] /// @param[in] p1 A point. [(x, y, z)] /// @return True if the points are considered to be at the same location. /// /// Basically, this function will return true if the specified points are /// close enough to eachother to be considered colocated. inline bool dtVequal(const float* p0, const float* p1) { static const float thr = dtSqr(1.0f/16384.0f); const float d = dtVdistSqr(p0, p1); return d < thr; } /// Checks that the specified vector's components are all finite. /// @param[in] v A point. [(x, y, z)] /// @return True if all of the point's components are finite, i.e. not NaN /// or any of the infinities. inline bool dtVisfinite(const float* v) { bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[1]) && dtMathIsfinite(v[2]); return result; } /// Checks that the specified vector's 2D components are finite. /// @param[in] v A point. [(x, y, z)] inline bool dtVisfinite2D(const float* v) { bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[2]); return result; } /// Derives the dot product of two vectors on the xz-plane. (@p u . @p v) /// @param[in] u A vector [(x, y, z)] /// @param[in] v A vector [(x, y, z)] /// @return The dot product on the xz-plane. /// /// The vectors are projected onto the xz-plane, so the y-values are ignored. inline float dtVdot2D(const float* u, const float* v) { return u[0]*v[0] + u[2]*v[2]; } /// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz) /// @param[in] u The LHV vector [(x, y, z)] /// @param[in] v The RHV vector [(x, y, z)] /// @return The dot product on the xz-plane. /// /// The vectors are projected onto the xz-plane, so the y-values are ignored. inline float dtVperp2D(const float* u, const float* v) { return u[2]*v[0] - u[0]*v[2]; } /// @} /// @name Computational geometry helper functions. /// @{ /// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C. /// @param[in] a Vertex A. [(x, y, z)] /// @param[in] b Vertex B. [(x, y, z)] /// @param[in] c Vertex C. [(x, y, z)] /// @return The signed xz-plane area of the triangle. inline float dtTriArea2D(const float* a, const float* b, const float* c) { const float abx = b[0] - a[0]; const float abz = b[2] - a[2]; const float acx = c[0] - a[0]; const float acz = c[2] - a[2]; return acx*abz - abx*acz; } /// Determines if two axis-aligned bounding boxes overlap. /// @param[in] amin Minimum bounds of box A. [(x, y, z)] /// @param[in] amax Maximum bounds of box A. [(x, y, z)] /// @param[in] bmin Minimum bounds of box B. [(x, y, z)] /// @param[in] bmax Maximum bounds of box B. [(x, y, z)] /// @return True if the two AABB's overlap. /// @see dtOverlapBounds inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3], const unsigned short bmin[3], const unsigned short bmax[3]) { bool overlap = true; overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap; overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap; overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap; return overlap; } /// Determines if two axis-aligned bounding boxes overlap. /// @param[in] amin Minimum bounds of box A. [(x, y, z)] /// @param[in] amax Maximum bounds of box A. [(x, y, z)] /// @param[in] bmin Minimum bounds of box B. [(x, y, z)] /// @param[in] bmax Maximum bounds of box B. [(x, y, z)] /// @return True if the two AABB's overlap. /// @see dtOverlapQuantBounds inline bool dtOverlapBounds(const float* amin, const float* amax, const float* bmin, const float* bmax) { bool overlap = true; overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap; overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap; overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap; return overlap; } /// Derives the closest point on a triangle from the specified reference point. /// @param[out] closest The closest point on the triangle. /// @param[in] p The reference point from which to test. [(x, y, z)] /// @param[in] a Vertex A of triangle ABC. [(x, y, z)] /// @param[in] b Vertex B of triangle ABC. [(x, y, z)] /// @param[in] c Vertex C of triangle ABC. [(x, y, z)] void dtClosestPtPointTriangle(float* closest, const float* p, const float* a, const float* b, const float* c); /// Derives the y-axis height of the closest point on the triangle from the specified reference point. /// @param[in] p The reference point from which to test. [(x, y, z)] /// @param[in] a Vertex A of triangle ABC. [(x, y, z)] /// @param[in] b Vertex B of triangle ABC. [(x, y, z)] /// @param[in] c Vertex C of triangle ABC. [(x, y, z)] /// @param[out] h The resulting height. bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h); bool dtIntersectSegmentPoly2D(const float* p0, const float* p1, const float* verts, int nverts, float& tmin, float& tmax, int& segMin, int& segMax); bool dtIntersectSegSeg2D(const float* ap, const float* aq, const float* bp, const float* bq, float& s, float& t); /// Determines if the specified point is inside the convex polygon on the xz-plane. /// @param[in] pt The point to check. [(x, y, z)] /// @param[in] verts The polygon vertices. [(x, y, z) * @p nverts] /// @param[in] nverts The number of vertices. [Limit: >= 3] /// @return True if the point is inside the polygon. bool dtPointInPolygon(const float* pt, const float* verts, const int nverts); bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts, float* ed, float* et); float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t); /// Derives the centroid of a convex polygon. /// @param[out] tc The centroid of the polgyon. [(x, y, z)] /// @param[in] idx The polygon indices. [(vertIndex) * @p nidx] /// @param[in] nidx The number of indices in the polygon. [Limit: >= 3] /// @param[in] verts The polygon vertices. [(x, y, z) * vertCount] void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts); /// Determines if the two convex polygons overlap on the xz-plane. /// @param[in] polya Polygon A vertices. [(x, y, z) * @p npolya] /// @param[in] npolya The number of vertices in polygon A. /// @param[in] polyb Polygon B vertices. [(x, y, z) * @p npolyb] /// @param[in] npolyb The number of vertices in polygon B. /// @return True if the two polygons overlap. bool dtOverlapPolyPoly2D(const float* polya, const int npolya, const float* polyb, const int npolyb); /// @} /// @name Miscellanious functions. /// @{ inline unsigned int dtNextPow2(unsigned int v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } inline unsigned int dtIlog2(unsigned int v) { unsigned int r; unsigned int shift; r = (v > 0xffff) << 4; v >>= r; shift = (v > 0xff) << 3; v >>= shift; r |= shift; shift = (v > 0xf) << 2; v >>= shift; r |= shift; shift = (v > 0x3) << 1; v >>= shift; r |= shift; r |= (v >> 1); return r; } inline int dtAlign4(int x) { return (x+3) & ~3; } inline int dtOppositeTile(int side) { return (side+4) & 0x7; } inline void dtSwapByte(unsigned char* a, unsigned char* b) { unsigned char tmp = *a; *a = *b; *b = tmp; } inline void dtSwapEndian(unsigned short* v) { unsigned char* x = (unsigned char*)v; dtSwapByte(x+0, x+1); } inline void dtSwapEndian(short* v) { unsigned char* x = (unsigned char*)v; dtSwapByte(x+0, x+1); } inline void dtSwapEndian(unsigned int* v) { unsigned char* x = (unsigned char*)v; dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2); } inline void dtSwapEndian(int* v) { unsigned char* x = (unsigned char*)v; dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2); } inline void dtSwapEndian(float* v) { unsigned char* x = (unsigned char*)v; dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2); } void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas, const float s, const float t, float* out); template TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(const unsigned char*& buffer, const size_t distanceToAdvance) { TypeToRetrieveAs* returnPointer = reinterpret_cast(buffer); buffer += distanceToAdvance; return returnPointer; } template TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(unsigned char*& buffer, const size_t distanceToAdvance) { TypeToRetrieveAs* returnPointer = reinterpret_cast(buffer); buffer += distanceToAdvance; return returnPointer; } /// @} #endif // DETOURCOMMON_H /////////////////////////////////////////////////////////////////////////// // This section contains detailed documentation for members that don't have // a source file. It reduces clutter in the main section of the header. /** @fn float dtTriArea2D(const float* a, const float* b, const float* c) @par The vertices are projected onto the xz-plane, so the y-values are ignored. This is a low cost function than can be used for various purposes. Its main purpose is for point/line relationship testing. In all cases: A value of zero indicates that all vertices are collinear or represent the same point. (On the xz-plane.) When used for point/line relationship tests, AB usually represents a line against which the C point is to be tested. In this case: A positive value indicates that point C is to the left of line AB, looking from A toward B.
A negative value indicates that point C is to the right of lineAB, looking from A toward B. When used for evaluating a triangle: The absolute value of the return value is two times the area of the triangle when it is projected onto the xz-plane. A positive return value indicates:
  • The vertices are wrapped in the normal Detour wrap direction.
  • The triangle's 3D face normal is in the general up direction.
A negative return value indicates:
  • The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)
  • The triangle's 3D face normal is in the general down direction.
*/