// Copyright Oliver Kowalke 2016. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_FIBERS_SPINLOCK_TTAS_ADAPTIVE_FUTEX_H #define BOOST_FIBERS_SPINLOCK_TTAS_ADAPTIVE_FUTEX_H #include #include #include #include #include #include #include // based on informations from: // https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops // https://software.intel.com/en-us/articles/long-duration-spin-wait-loops-on-hyper-threading-technology-enabled-intel-processors namespace boost { namespace fibers { namespace detail { class spinlock_ttas_adaptive_futex { private: template< typename FBSplk > friend class spinlock_rtm; std::atomic< std::int32_t > value_{ 0 }; std::atomic< std::int32_t > retries_{ 0 }; public: spinlock_ttas_adaptive_futex() = default; spinlock_ttas_adaptive_futex( spinlock_ttas_adaptive_futex const&) = delete; spinlock_ttas_adaptive_futex & operator=( spinlock_ttas_adaptive_futex const&) = delete; void lock() noexcept { static thread_local std::minstd_rand generator{ std::random_device{}() }; std::int32_t collisions = 0, retries = 0, expected = 0; const std::int32_t prev_retries = retries_.load( std::memory_order_relaxed); const std::int32_t max_relax_retries = (std::min)( static_cast< std::int32_t >( BOOST_FIBERS_SPIN_BEFORE_SLEEP0), 2 * prev_retries + 10); const std::int32_t max_sleep_retries = (std::min)( static_cast< std::int32_t >( BOOST_FIBERS_SPIN_BEFORE_YIELD), 2 * prev_retries + 10); // after max. spins or collisions suspend via futex while ( retries++ < BOOST_FIBERS_RETRY_THRESHOLD) { // avoid using multiple pause instructions for a delay of a specific cycle count // the delay of cpu_relax() (pause on Intel) depends on the processor family // the cycle count can not guaranteed from one system to the next // -> check the shared variable 'value_' in between each cpu_relax() to prevent // unnecessarily long delays on some systems // test shared variable 'status_' // first access to 'value_' -> chache miss // sucessive acccess to 'value_' -> cache hit // if 'value_' was released by other fiber // cached 'value_' is invalidated -> cache miss if ( 0 != ( expected = value_.load( std::memory_order_relaxed) ) ) { #if !defined(BOOST_FIBERS_SPIN_SINGLE_CORE) if ( max_relax_retries > retries) { // give CPU a hint that this thread is in a "spin-wait" loop // delays the next instruction's execution for a finite period of time (depends on processor family) // the CPU is not under demand, parts of the pipeline are no longer being used // -> reduces the power consumed by the CPU // -> prevent pipeline stalls cpu_relax(); } else if ( max_sleep_retries > retries) { // std::this_thread::sleep_for( 0us) has a fairly long instruction path length, // combined with an expensive ring3 to ring 0 transition costing about 1000 cycles // std::this_thread::sleep_for( 0us) lets give up this_thread the remaining part of its time slice // if and only if a thread of equal or greater priority is ready to run static constexpr std::chrono::microseconds us0{ 0 }; std::this_thread::sleep_for( us0); } else { // std::this_thread::yield() allows this_thread to give up the remaining part of its time slice, // but only to another thread on the same processor // instead of constant checking, a thread only checks if no other useful work is pending std::this_thread::yield(); } #else // std::this_thread::yield() allows this_thread to give up the remaining part of its time slice, // but only to another thread on the same processor // instead of constant checking, a thread only checks if no other useful work is pending std::this_thread::yield(); #endif } else if ( ! value_.compare_exchange_strong( expected, 1, std::memory_order_acquire) ) { // spinlock now contended // utilize 'Binary Exponential Backoff' algorithm // linear_congruential_engine is a random number engine based on Linear congruential generator (LCG) std::uniform_int_distribution< std::int32_t > distribution{ 0, static_cast< std::int32_t >( 1) << (std::min)(collisions, static_cast< std::int32_t >( BOOST_FIBERS_CONTENTION_WINDOW_THRESHOLD)) }; const std::int32_t z = distribution( generator); ++collisions; for ( std::int32_t i = 0; i < z; ++i) { // -> reduces the power consumed by the CPU // -> prevent pipeline stalls cpu_relax(); } } else { // success, lock acquired retries_.store( prev_retries + (retries - prev_retries) / 8, std::memory_order_relaxed); return; } } // failure, lock not acquired // pause via futex if ( 2 != expected) { expected = value_.exchange( 2, std::memory_order_acquire); } while ( 0 != expected) { futex_wait( & value_, 2); expected = value_.exchange( 2, std::memory_order_acquire); } // success, lock acquired retries_.store( prev_retries + (retries - prev_retries) / 8, std::memory_order_relaxed); } bool try_lock() noexcept { std::int32_t expected = 0; return value_.compare_exchange_strong( expected, 1, std::memory_order_acquire); } void unlock() noexcept { if ( 1 != value_.fetch_sub( 1, std::memory_order_acquire) ) { value_.store( 0, std::memory_order_release); futex_wake( & value_); } } }; }}} #endif // BOOST_FIBERS_SPINLOCK_TTAS_ADAPTIVE_FUTEX_H