// Copyright Oliver Kowalke 2016. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_FIBERS_UNBUFFERED_CHANNEL_H #define BOOST_FIBERS_UNBUFFERED_CHANNEL_H #include #include #include #include #include #include #include #include #include #include #include #if defined(BOOST_NO_CXX14_STD_EXCHANGE) #include #endif #include #include #ifdef BOOST_HAS_ABI_HEADERS # include BOOST_ABI_PREFIX #endif namespace boost { namespace fibers { template< typename T > class unbuffered_channel { public: typedef typename std::remove_reference< T >::type value_type; private: typedef context::wait_queue_t wait_queue_type; struct slot { value_type value; context * ctx; slot( value_type const& value_, context * ctx_) : value{ value_ }, ctx{ ctx_ } { } slot( value_type && value_, context * ctx_) : value{ std::move( value_) }, ctx{ ctx_ } { } }; // shared cacheline std::atomic< slot * > slot_{ nullptr }; // shared cacheline std::atomic_bool closed_{ false }; mutable detail::spinlock splk_producers_{}; wait_queue_type waiting_producers_{}; mutable detail::spinlock splk_consumers_{}; wait_queue_type waiting_consumers_{}; char pad_[cacheline_length]; bool is_empty_() { return nullptr == slot_.load( std::memory_order_acquire); } bool try_push_( slot * own_slot) { for (;;) { slot * s = slot_.load( std::memory_order_acquire); if ( nullptr == s) { if ( ! slot_.compare_exchange_strong( s, own_slot, std::memory_order_acq_rel) ) { continue; } return true; } else { return false; } } } slot * try_pop_() { slot * nil_slot = nullptr; for (;;) { slot * s = slot_.load( std::memory_order_acquire); if ( nullptr != s) { if ( ! slot_.compare_exchange_strong( s, nil_slot, std::memory_order_acq_rel) ) { continue;} } return s; } } public: unbuffered_channel() { } ~unbuffered_channel() { close(); } unbuffered_channel( unbuffered_channel const&) = delete; unbuffered_channel & operator=( unbuffered_channel const&) = delete; bool is_closed() const noexcept { return closed_.load( std::memory_order_acquire); } void close() noexcept { context * active_ctx = context::active(); // set flag if ( ! closed_.exchange( true, std::memory_order_acquire) ) { // notify current waiting slot * s = slot_.load( std::memory_order_acquire); if ( nullptr != s) { // notify context active_ctx->schedule( s->ctx); } // notify all waiting producers detail::spinlock_lock lk1{ splk_producers_ }; while ( ! waiting_producers_.empty() ) { context * producer_ctx = & waiting_producers_.front(); waiting_producers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { // notify context active_ctx->schedule( producer_ctx); } else if ( static_cast< std::intptr_t >( 0) == expected) { // no timed-wait op. // notify context active_ctx->schedule( producer_ctx); } } // notify all waiting consumers detail::spinlock_lock lk2{ splk_consumers_ }; while ( ! waiting_consumers_.empty() ) { context * consumer_ctx = & waiting_consumers_.front(); waiting_consumers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { // notify context active_ctx->schedule( consumer_ctx); } else if ( static_cast< std::intptr_t >( 0) == expected) { // no timed-wait op. // notify context active_ctx->schedule( consumer_ctx); } } } } channel_op_status push( value_type const& value) { context * active_ctx = context::active(); slot s{ value, active_ctx }; for (;;) { if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( try_push_( & s) ) { detail::spinlock_lock lk{ splk_consumers_ }; // notify one waiting consumer while ( ! waiting_consumers_.empty() ) { context * consumer_ctx = & waiting_consumers_.front(); waiting_consumers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { // notify context active_ctx->schedule( consumer_ctx); break; } else if ( static_cast< std::intptr_t >( 0) == expected) { // no timed-wait op. // notify context active_ctx->schedule( consumer_ctx); break; } } // suspend till value has been consumed active_ctx->suspend( lk); // resumed if ( nullptr == s.ctx) { // value has been consumed return channel_op_status::success; } else { // channel was closed before value was consumed return channel_op_status::closed; } } else { detail::spinlock_lock lk{ splk_producers_ }; if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( is_empty_() ) { continue; } active_ctx->wait_link( waiting_producers_); active_ctx->twstatus.store( static_cast< std::intptr_t >( 0), std::memory_order_release); // suspend this producer active_ctx->suspend( lk); // resumed, slot mabye free } } } channel_op_status push( value_type && value) { context * active_ctx = context::active(); slot s{ std::move( value), active_ctx }; for (;;) { if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( try_push_( & s) ) { detail::spinlock_lock lk{ splk_consumers_ }; // notify one waiting consumer while ( ! waiting_consumers_.empty() ) { context * consumer_ctx = & waiting_consumers_.front(); waiting_consumers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { // notify context active_ctx->schedule( consumer_ctx); break; } else if ( static_cast< std::intptr_t >( 0) == expected) { // no timed-wait op. // notify context active_ctx->schedule( consumer_ctx); break; } } // suspend till value has been consumed active_ctx->suspend( lk); // resumed if ( nullptr == s.ctx) { // value has been consumed return channel_op_status::success; } else { // channel was closed before value was consumed return channel_op_status::closed; } } else { detail::spinlock_lock lk{ splk_producers_ }; if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( is_empty_() ) { continue; } active_ctx->wait_link( waiting_producers_); active_ctx->twstatus.store( static_cast< std::intptr_t >( 0), std::memory_order_release); // suspend this producer active_ctx->suspend( lk); // resumed, slot mabye free } } } template< typename Rep, typename Period > channel_op_status push_wait_for( value_type const& value, std::chrono::duration< Rep, Period > const& timeout_duration) { return push_wait_until( value, std::chrono::steady_clock::now() + timeout_duration); } template< typename Rep, typename Period > channel_op_status push_wait_for( value_type && value, std::chrono::duration< Rep, Period > const& timeout_duration) { return push_wait_until( std::forward< value_type >( value), std::chrono::steady_clock::now() + timeout_duration); } template< typename Clock, typename Duration > channel_op_status push_wait_until( value_type const& value, std::chrono::time_point< Clock, Duration > const& timeout_time_) { context * active_ctx = context::active(); slot s{ value, active_ctx }; std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_); for (;;) { if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( try_push_( & s) ) { detail::spinlock_lock lk{ splk_consumers_ }; // notify one waiting consumer while ( ! waiting_consumers_.empty() ) { context * consumer_ctx = & waiting_consumers_.front(); waiting_consumers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { // notify context active_ctx->schedule( consumer_ctx); break; } else if ( static_cast< std::intptr_t >( 0) == expected) { // no timed-wait op. // notify context active_ctx->schedule( consumer_ctx); break; } } // suspend this producer active_ctx->twstatus.store( reinterpret_cast< std::intptr_t >( this), std::memory_order_release); if ( ! active_ctx->wait_until( timeout_time, lk) ) { // clear slot slot * nil_slot = nullptr, * own_slot = & s; slot_.compare_exchange_strong( own_slot, nil_slot, std::memory_order_acq_rel); // resumed, value has not been consumed return channel_op_status::timeout; } // resumed if ( nullptr == s.ctx) { // value has been consumed return channel_op_status::success; } else { // channel was closed before value was consumed return channel_op_status::closed; } } else { detail::spinlock_lock lk{ splk_producers_ }; if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( is_empty_() ) { continue; } active_ctx->wait_link( waiting_producers_); active_ctx->twstatus.store( reinterpret_cast< std::intptr_t >( this), std::memory_order_release); // suspend this producer if ( ! active_ctx->wait_until( timeout_time, lk) ) { // relock local lk lk.lock(); // remove from waiting-queue waiting_producers_.remove( * active_ctx); return channel_op_status::timeout; } // resumed, slot maybe free } } } template< typename Clock, typename Duration > channel_op_status push_wait_until( value_type && value, std::chrono::time_point< Clock, Duration > const& timeout_time_) { context * active_ctx = context::active(); slot s{ std::move( value), active_ctx }; std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_); for (;;) { if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( try_push_( & s) ) { detail::spinlock_lock lk{ splk_consumers_ }; // notify one waiting consumer while ( ! waiting_consumers_.empty() ) { context * consumer_ctx = & waiting_consumers_.front(); waiting_consumers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( consumer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { // notify context active_ctx->schedule( consumer_ctx); break; } else if ( static_cast< std::intptr_t >( 0) == expected) { // no timed-wait op. // notify context active_ctx->schedule( consumer_ctx); break; } } // suspend this producer active_ctx->twstatus.store( reinterpret_cast< std::intptr_t >( this), std::memory_order_release); if ( ! active_ctx->wait_until( timeout_time, lk) ) { // clear slot slot * nil_slot = nullptr, * own_slot = & s; slot_.compare_exchange_strong( own_slot, nil_slot, std::memory_order_acq_rel); // resumed, value has not been consumed return channel_op_status::timeout; } // resumed if ( nullptr == s.ctx) { // value has been consumed return channel_op_status::success; } else { // channel was closed before value was consumed return channel_op_status::closed; } } else { detail::spinlock_lock lk{ splk_producers_ }; if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( is_empty_() ) { continue; } active_ctx->wait_link( waiting_producers_); active_ctx->twstatus.store( reinterpret_cast< std::intptr_t >( this), std::memory_order_release); // suspend this producer if ( ! active_ctx->wait_until( timeout_time, lk) ) { // relock local lk lk.lock(); // remove from waiting-queue waiting_producers_.remove( * active_ctx); return channel_op_status::timeout; } // resumed, slot maybe free } } } channel_op_status pop( value_type & value) { context * active_ctx = context::active(); slot * s = nullptr; for (;;) { if ( nullptr != ( s = try_pop_() ) ) { { detail::spinlock_lock lk{ splk_producers_ }; // notify one waiting producer while ( ! waiting_producers_.empty() ) { context * producer_ctx = & waiting_producers_.front(); waiting_producers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { lk.unlock(); // notify context active_ctx->schedule( producer_ctx); break; } else if ( static_cast< std::intptr_t >( 0) == expected) { lk.unlock(); // no timed-wait op. // notify context active_ctx->schedule( producer_ctx); break; } } } value = std::move( s->value); // notify context #if defined(BOOST_NO_CXX14_STD_EXCHANGE) active_ctx->schedule( detail::exchange( s->ctx, nullptr) ); #else active_ctx->schedule( std::exchange( s->ctx, nullptr) ); #endif return channel_op_status::success; } else { detail::spinlock_lock lk{ splk_consumers_ }; if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( ! is_empty_() ) { continue; } active_ctx->wait_link( waiting_consumers_); active_ctx->twstatus.store( static_cast< std::intptr_t >( 0), std::memory_order_release); // suspend this consumer active_ctx->suspend( lk); // resumed, slot mabye set } } } value_type value_pop() { context * active_ctx = context::active(); slot * s = nullptr; for (;;) { if ( nullptr != ( s = try_pop_() ) ) { { detail::spinlock_lock lk{ splk_producers_ }; // notify one waiting producer while ( ! waiting_producers_.empty() ) { context * producer_ctx = & waiting_producers_.front(); waiting_producers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { lk.unlock(); // notify context active_ctx->schedule( producer_ctx); break; } else if ( static_cast< std::intptr_t >( 0) == expected) { lk.unlock(); // no timed-wait op. // notify context active_ctx->schedule( producer_ctx); break; } } } // consume value value_type value = std::move( s->value); // notify context #if defined(BOOST_NO_CXX14_STD_EXCHANGE) active_ctx->schedule( detail::exchange( s->ctx, nullptr) ); #else active_ctx->schedule( std::exchange( s->ctx, nullptr) ); #endif return std::move( value); } else { detail::spinlock_lock lk{ splk_consumers_ }; if ( BOOST_UNLIKELY( is_closed() ) ) { throw fiber_error{ std::make_error_code( std::errc::operation_not_permitted), "boost fiber: channel is closed" }; } if ( ! is_empty_() ) { continue; } active_ctx->wait_link( waiting_consumers_); active_ctx->twstatus.store( static_cast< std::intptr_t >( 0), std::memory_order_release); // suspend this consumer active_ctx->suspend( lk); // resumed, slot mabye set } } } template< typename Rep, typename Period > channel_op_status pop_wait_for( value_type & value, std::chrono::duration< Rep, Period > const& timeout_duration) { return pop_wait_until( value, std::chrono::steady_clock::now() + timeout_duration); } template< typename Clock, typename Duration > channel_op_status pop_wait_until( value_type & value, std::chrono::time_point< Clock, Duration > const& timeout_time_) { context * active_ctx = context::active(); slot * s = nullptr; std::chrono::steady_clock::time_point timeout_time = detail::convert( timeout_time_); for (;;) { if ( nullptr != ( s = try_pop_() ) ) { { detail::spinlock_lock lk{ splk_producers_ }; // notify one waiting producer while ( ! waiting_producers_.empty() ) { context * producer_ctx = & waiting_producers_.front(); waiting_producers_.pop_front(); std::intptr_t expected = reinterpret_cast< std::intptr_t >( this); if ( producer_ctx->twstatus.compare_exchange_strong( expected, static_cast< std::intptr_t >( -1), std::memory_order_acq_rel) ) { lk.unlock(); // notify context active_ctx->schedule( producer_ctx); break; } else if ( static_cast< std::intptr_t >( 0) == expected) { lk.unlock(); // no timed-wait op. // notify context active_ctx->schedule( producer_ctx); break; } } } // consume value value = std::move( s->value); // notify context #if defined(BOOST_NO_CXX14_STD_EXCHANGE) active_ctx->schedule( detail::exchange( s->ctx, nullptr) ); #else active_ctx->schedule( std::exchange( s->ctx, nullptr) ); #endif return channel_op_status::success; } else { detail::spinlock_lock lk{ splk_consumers_ }; if ( BOOST_UNLIKELY( is_closed() ) ) { return channel_op_status::closed; } if ( ! is_empty_() ) { continue; } active_ctx->wait_link( waiting_consumers_); active_ctx->twstatus.store( reinterpret_cast< std::intptr_t >( this), std::memory_order_release); // suspend this consumer if ( ! active_ctx->wait_until( timeout_time, lk) ) { // relock local lk lk.lock(); // remove from waiting-queue waiting_consumers_.remove( * active_ctx); return channel_op_status::timeout; } } } } class iterator { private: typedef typename std::aligned_storage< sizeof( value_type), alignof( value_type) >::type storage_type; unbuffered_channel * chan_{ nullptr }; storage_type storage_; void increment_() { BOOST_ASSERT( nullptr != chan_); try { ::new ( static_cast< void * >( std::addressof( storage_) ) ) value_type{ chan_->value_pop() }; } catch ( fiber_error const&) { chan_ = nullptr; } } public: typedef std::input_iterator_tag iterator_category; typedef std::ptrdiff_t difference_type; typedef value_type * pointer; typedef value_type & reference; typedef pointer pointer_t; typedef reference reference_t; iterator() noexcept = default; explicit iterator( unbuffered_channel< T > * chan) noexcept : chan_{ chan } { increment_(); } iterator( iterator const& other) noexcept : chan_{ other.chan_ } { } iterator & operator=( iterator const& other) noexcept { if ( this == & other) return * this; chan_ = other.chan_; return * this; } bool operator==( iterator const& other) const noexcept { return other.chan_ == chan_; } bool operator!=( iterator const& other) const noexcept { return other.chan_ != chan_; } iterator & operator++() { reinterpret_cast< value_type * >( std::addressof( storage_) )->~value_type(); increment_(); return * this; } iterator operator++( int) = delete; reference_t operator*() noexcept { return * reinterpret_cast< value_type * >( std::addressof( storage_) ); } pointer_t operator->() noexcept { return reinterpret_cast< value_type * >( std::addressof( storage_) ); } }; friend class iterator; }; template< typename T > typename unbuffered_channel< T >::iterator begin( unbuffered_channel< T > & chan) { return typename unbuffered_channel< T >::iterator( & chan); } template< typename T > typename unbuffered_channel< T >::iterator end( unbuffered_channel< T > &) { return typename unbuffered_channel< T >::iterator(); } }} #ifdef BOOST_HAS_ABI_HEADERS # include BOOST_ABI_SUFFIX #endif #endif // BOOST_FIBERS_UNBUFFERED_CHANNEL_H