// Copyright Oliver Kowalke 2009. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include #include #include #include #include #include #include #include #include "../bind_processor.hpp" #include "../clock.hpp" #include "../cycle.hpp" boost::coroutines::flag_fpu_t preserve_fpu = boost::coroutines::fpu_not_preserved; boost::uint64_t jobs = 1000; struct X { std::string str; X( std::string const& str_) : str( str_) {} }; const X x("abc"); void fn_void( boost::coroutines::asymmetric_coroutine< void >::push_type & c) { while ( true) c(); } void fn_int( boost::coroutines::asymmetric_coroutine< int >::push_type & c) { while ( true) c( 7); } void fn_x( boost::coroutines::asymmetric_coroutine< X >::push_type & c) { while ( true) c( x); } duration_type measure_time_void( duration_type overhead) { boost::coroutines::asymmetric_coroutine< void >::pull_type c( fn_void, boost::coroutines::attributes( preserve_fpu) ); time_point_type start( clock_type::now() ); for ( std::size_t i = 0; i < jobs; ++i) { c(); } duration_type total = clock_type::now() - start; total -= overhead_clock(); // overhead of measurement total /= jobs; // loops total /= 2; // 2x jump_fcontext return total; } duration_type measure_time_int( duration_type overhead) { boost::coroutines::asymmetric_coroutine< int >::pull_type c( fn_int, boost::coroutines::attributes( preserve_fpu) ); time_point_type start( clock_type::now() ); for ( std::size_t i = 0; i < jobs; ++i) { c(); } duration_type total = clock_type::now() - start; total -= overhead_clock(); // overhead of measurement total /= jobs; // loops total /= 2; // 2x jump_fcontext return total; } duration_type measure_time_x( duration_type overhead) { boost::coroutines::asymmetric_coroutine< X >::pull_type c( fn_x, boost::coroutines::attributes( preserve_fpu) ); time_point_type start( clock_type::now() ); for ( std::size_t i = 0; i < jobs; ++i) { c(); } duration_type total = clock_type::now() - start; total -= overhead_clock(); // overhead of measurement total /= jobs; // loops total /= 2; // 2x jump_fcontext return total; } # ifdef BOOST_CONTEXT_CYCLE cycle_type measure_cycles_void( cycle_type overhead) { boost::coroutines::asymmetric_coroutine< void >::pull_type c( fn_void, boost::coroutines::attributes( preserve_fpu) ); cycle_type start( cycles() ); for ( std::size_t i = 0; i < jobs; ++i) { c(); } cycle_type total = cycles() - start; total -= overhead; // overhead of measurement total /= jobs; // loops total /= 2; // 2x jump_fcontext return total; } cycle_type measure_cycles_int( cycle_type overhead) { boost::coroutines::asymmetric_coroutine< int >::pull_type c( fn_int, boost::coroutines::attributes( preserve_fpu) ); cycle_type start( cycles() ); for ( std::size_t i = 0; i < jobs; ++i) { c(); } cycle_type total = cycles() - start; total -= overhead; // overhead of measurement total /= jobs; // loops total /= 2; // 2x jump_fcontext return total; } cycle_type measure_cycles_x( cycle_type overhead) { boost::coroutines::asymmetric_coroutine< X >::pull_type c( fn_x, boost::coroutines::attributes( preserve_fpu) ); cycle_type start( cycles() ); for ( std::size_t i = 0; i < jobs; ++i) { c(); } cycle_type total = cycles() - start; total -= overhead; // overhead of measurement total /= jobs; // loops total /= 2; // 2x jump_fcontext return total; } # endif int main( int argc, char * argv[]) { try { bool preserve = false, bind = false; boost::program_options::options_description desc("allowed options"); desc.add_options() ("help", "help message") ("bind,b", boost::program_options::value< bool >( & bind), "bind thread to CPU") ("fpu,f", boost::program_options::value< bool >( & preserve), "preserve FPU registers") ("jobs,j", boost::program_options::value< boost::uint64_t >( & jobs), "jobs to run"); boost::program_options::variables_map vm; boost::program_options::store( boost::program_options::parse_command_line( argc, argv, desc), vm); boost::program_options::notify( vm); if ( vm.count("help") ) { std::cout << desc << std::endl; return EXIT_SUCCESS; } if ( preserve) preserve_fpu = boost::coroutines::fpu_preserved; if ( bind) bind_to_processor( 0); duration_type overhead_c = overhead_clock(); std::cout << "overhead " << overhead_c.count() << " nano seconds" << std::endl; boost::uint64_t res = measure_time_void( overhead_c).count(); std::cout << "void: average of " << res << " nano seconds" << std::endl; res = measure_time_int( overhead_c).count(); std::cout << "int: average of " << res << " nano seconds" << std::endl; res = measure_time_x( overhead_c).count(); std::cout << "X: average of " << res << " nano seconds" << std::endl; #ifdef BOOST_CONTEXT_CYCLE cycle_type overhead_y = overhead_cycle(); std::cout << "overhead " << overhead_y << " cpu cycles" << std::endl; res = measure_cycles_void( overhead_y); std::cout << "void: average of " << res << " cpu cycles" << std::endl; res = measure_cycles_int( overhead_y); std::cout << "int: average of " << res << " cpu cycles" << std::endl; res = measure_cycles_x( overhead_y); std::cout << "X: average of " << res << " cpu cycles" << std::endl; #endif return EXIT_SUCCESS; } catch ( std::exception const& e) { std::cerr << "exception: " << e.what() << std::endl; } catch (...) { std::cerr << "unhandled exception" << std::endl; } return EXIT_FAILURE; }