/* * Simulation of an ensemble of Roessler attractors using NT2 SIMD library * This requires the SIMD library headers. * * Copyright 2014 Mario Mulansky * * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or * copy at http://www.boost.org/LICENSE_1_0.txt) * */ #include #include #include #include #include #include #include #include #include #include #include #include namespace odeint = boost::numeric::odeint; namespace simd = boost::simd; typedef boost::timer timer_type; static const size_t dim = 3; // roessler is 3D typedef double fp_type; //typedef float fp_type; typedef simd::pack simd_pack; typedef boost::array state_type; // use the simd allocator to get properly aligned memory typedef std::vector< state_type, simd::allocator< state_type > > state_vec; static const size_t pack_size = simd_pack::static_size; //--------------------------------------------------------------------------- struct roessler_system { const fp_type m_a, m_b, m_c; roessler_system(const fp_type a, const fp_type b, const fp_type c) : m_a(a), m_b(b), m_c(c) {} void operator()(const state_type &x, state_type &dxdt, const fp_type t) const { dxdt[0] = -1.0*x[1] - x[2]; dxdt[1] = x[0] + m_a * x[1]; dxdt[2] = m_b + x[2] * (x[0] - m_c); } }; //--------------------------------------------------------------------------- int main(int argc, char *argv[]) { if(argc<3) { std::cerr << "Expected size and steps as parameter" << std::endl; exit(1); } const size_t n = atoi(argv[1]); const size_t steps = atoi(argv[2]); const fp_type dt = 0.01; const fp_type a = 0.2; const fp_type b = 1.0; const fp_type c = 9.0; // random initial conditions on the device std::vector x(n), y(n), z(n); std::default_random_engine generator; std::uniform_real_distribution distribution_xy(-8.0, 8.0); std::uniform_real_distribution distribution_z(0.0, 20.0); auto rand_xy = std::bind(distribution_xy, std::ref(generator)); auto rand_z = std::bind(distribution_z, std::ref(generator)); std::generate(x.begin(), x.end(), rand_xy); std::generate(y.begin(), y.end(), rand_xy); std::generate(z.begin(), z.end(), rand_z); state_vec state(n/pack_size); for(size_t i=0; i stepper; roessler_system sys(a, b, c); timer_type timer; fp_type t = 0.0; for(int step = 0; step < steps; step++) { for(size_t i = 0; i < n/pack_size; ++i) { stepper.do_step(sys, state[i], t, dt); } t += dt; } std::cout.precision(16); std::cout << "Integration finished, runtime for " << steps << " steps: "; std::cout << timer.elapsed() << " s" << std::endl; // compute some accumulation to make sure all results have been computed simd_pack s_pack = 0.0; for(size_t i = 0; i < n/pack_size; ++i) { s_pack += state[i][0]; } fp_type s = 0.0; for(size_t p=0; p