// (C) Copyright John Maddock 2008. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #include #include #include #define BOOST_TEST_MAIN #include #include #include #include #include #include #include #ifdef BOOST_MSVC #pragma warning(disable:4127) #endif #if !defined(_CRAYC) && !defined(__CUDACC__) && (!defined(__GNUC__) || (__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ > 3))) #if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(__SSE2__) || defined(TEST_SSE2) #include #include "xmmintrin.h" #define TEST_SSE2 #endif #endif template void test_value(const T& val, const char* name) { using namespace boost::math; T upper = tools::max_value(); T lower = -upper; std::cout << "Testing type " << name << " with initial value " << val << std::endl; BOOST_CHECK_EQUAL(float_distance(float_next(val), val), -1); BOOST_CHECK(float_next(val) > val); BOOST_CHECK_EQUAL(float_distance(float_prior(val), val), 1); BOOST_CHECK(float_prior(val) < val); BOOST_CHECK_EQUAL(float_distance((boost::math::nextafter)(val, upper), val), -1); BOOST_CHECK((boost::math::nextafter)(val, upper) > val); BOOST_CHECK_EQUAL(float_distance((boost::math::nextafter)(val, lower), val), 1); BOOST_CHECK((boost::math::nextafter)(val, lower) < val); BOOST_CHECK_EQUAL(float_distance(float_next(float_next(val)), val), -2); BOOST_CHECK_EQUAL(float_distance(float_prior(float_prior(val)), val), 2); BOOST_CHECK_EQUAL(float_distance(float_prior(float_prior(val)), float_next(float_next(val))), 4); BOOST_CHECK_EQUAL(float_distance(float_prior(float_next(val)), val), 0); BOOST_CHECK_EQUAL(float_distance(float_next(float_prior(val)), val), 0); BOOST_CHECK_EQUAL(float_prior(float_next(val)), val); BOOST_CHECK_EQUAL(float_next(float_prior(val)), val); BOOST_CHECK_EQUAL(float_distance(float_advance(val, 4), val), -4); BOOST_CHECK_EQUAL(float_distance(float_advance(val, -4), val), 4); if(std::numeric_limits::is_specialized && (std::numeric_limits::has_denorm == std::denorm_present)) { BOOST_CHECK_EQUAL(float_distance(float_advance(float_next(float_next(val)), 4), float_next(float_next(val))), -4); BOOST_CHECK_EQUAL(float_distance(float_advance(float_next(float_next(val)), -4), float_next(float_next(val))), 4); } if(val > 0) { T n = val + ulp(val); T fn = float_next(val); if(n > fn) { BOOST_CHECK_LE(ulp(val), boost::math::tools::min_value()); } else { BOOST_CHECK_EQUAL(fn, n); } } else if(val == 0) { BOOST_CHECK_GE(boost::math::tools::min_value(), ulp(val)); } else { T n = val - ulp(val); T fp = float_prior(val); if(n < fp) { BOOST_CHECK_LE(ulp(val), boost::math::tools::min_value()); } else { BOOST_CHECK_EQUAL(fp, n); } } } template void test_values(const T& val, const char* name) { static const T a = static_cast(1.3456724e22); static const T b = static_cast(1.3456724e-22); static const T z = 0; static const T one = 1; static const T two = 2; std::cout << "Testing type " << name << std::endl; T den = (std::numeric_limits::min)() / 4; if(den != 0) { std::cout << "Denormals are active\n"; } else { std::cout << "Denormals are flushed to zero.\n"; } test_value(a, name); test_value(-a, name); test_value(b, name); test_value(-b, name); test_value(boost::math::tools::epsilon(), name); test_value(-boost::math::tools::epsilon(), name); test_value(boost::math::tools::min_value(), name); test_value(-boost::math::tools::min_value(), name); if (std::numeric_limits::is_specialized && (std::numeric_limits::has_denorm == std::denorm_present) && ((std::numeric_limits::min)() / 2 != 0)) { test_value(z, name); test_value(-z, name); } test_value(one, name); test_value(-one, name); test_value(two, name); test_value(-two, name); #if defined(TEST_SSE2) if((_mm_getcsr() & (_MM_FLUSH_ZERO_ON | 0x40)) == 0) { #endif if(std::numeric_limits::is_specialized && (std::numeric_limits::has_denorm == std::denorm_present) && ((std::numeric_limits::min)() / 2 != 0)) { test_value(std::numeric_limits::denorm_min(), name); test_value(-std::numeric_limits::denorm_min(), name); test_value(2 * std::numeric_limits::denorm_min(), name); test_value(-2 * std::numeric_limits::denorm_min(), name); } #if defined(TEST_SSE2) } #endif static const int primes[] = { 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, }; for(unsigned i = 0; i < sizeof(primes)/sizeof(primes[0]); ++i) { T v1 = val; T v2 = val; for(int j = 0; j < primes[i]; ++j) { v1 = boost::math::float_next(v1); v2 = boost::math::float_prior(v2); } BOOST_CHECK_EQUAL(boost::math::float_distance(v1, val), -primes[i]); BOOST_CHECK_EQUAL(boost::math::float_distance(v2, val), primes[i]); BOOST_CHECK_EQUAL(boost::math::float_advance(val, primes[i]), v1); BOOST_CHECK_EQUAL(boost::math::float_advance(val, -primes[i]), v2); } if(std::numeric_limits::is_specialized && (std::numeric_limits::has_infinity)) { BOOST_CHECK_EQUAL(boost::math::float_prior(std::numeric_limits::infinity()), (std::numeric_limits::max)()); BOOST_CHECK_EQUAL(boost::math::float_next(-std::numeric_limits::infinity()), -(std::numeric_limits::max)()); BOOST_MATH_CHECK_THROW(boost::math::float_prior(-std::numeric_limits::infinity()), std::domain_error); BOOST_MATH_CHECK_THROW(boost::math::float_next(std::numeric_limits::infinity()), std::domain_error); if(boost::math::policies:: BOOST_MATH_OVERFLOW_ERROR_POLICY == boost::math::policies::throw_on_error) { BOOST_MATH_CHECK_THROW(boost::math::float_prior(-(std::numeric_limits::max)()), std::overflow_error); BOOST_MATH_CHECK_THROW(boost::math::float_next((std::numeric_limits::max)()), std::overflow_error); } else { BOOST_CHECK_EQUAL(boost::math::float_prior(-(std::numeric_limits::max)()), -std::numeric_limits::infinity()); BOOST_CHECK_EQUAL(boost::math::float_next((std::numeric_limits::max)()), std::numeric_limits::infinity()); } } // // We need to test float_distance over mulyiple orders of magnitude, // the only way to get an accurate true result is to count the representations // between the two end points, but we can only really do this for type float: // if (std::numeric_limits::is_specialized && (std::numeric_limits::digits < 30) && (std::numeric_limits::radix == 2)) { T left, right, dist, fresult; boost::uintmax_t result; left = static_cast(0.1); right = left * static_cast(4.2); dist = boost::math::float_distance(left, right); // We have to use a wider integer type for the accurate count, since there // aren't enough bits in T to get a true result if the values differ // by more than a factor of 2: result = 0; for (; left != right; ++result, left = boost::math::float_next(left)); fresult = static_cast(result); BOOST_CHECK_EQUAL(fresult, dist); left = static_cast(-0.1); right = left * static_cast(4.2); dist = boost::math::float_distance(right, left); result = 0; for (; left != right; ++result, left = boost::math::float_prior(left)); fresult = static_cast(result); BOOST_CHECK_EQUAL(fresult, dist); left = static_cast(-1.1) * (std::numeric_limits::min)(); right = static_cast(-4.1) * left; dist = boost::math::float_distance(left, right); result = 0; for (; left != right; ++result, left = boost::math::float_next(left)); fresult = static_cast(result); BOOST_CHECK_EQUAL(fresult, dist); } } BOOST_AUTO_TEST_CASE( test_main ) { test_values(1.0f, "float"); test_values(1.0, "double"); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_values(1.0L, "long double"); test_values(boost::math::concepts::real_concept(0), "real_concept"); #endif // // Test some multiprecision types: // test_values(boost::multiprecision::cpp_bin_float_quad(0), "cpp_bin_float_quad"); // This is way to slow to test routinely: //test_values(boost::multiprecision::cpp_bin_float_single(0), "cpp_bin_float_single"); test_values(boost::multiprecision::cpp_bin_float_50(0), "cpp_bin_float_50"); #if defined(TEST_SSE2) int mmx_flags = _mm_getcsr(); // We'll restore these later. #ifdef _WIN32 // These tests fail pretty badly on Linux x64, especially with Intel-12.1 _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); std::cout << "Testing again with Flush-To-Zero set" << std::endl; std::cout << "SSE2 control word is: " << std::hex << _mm_getcsr() << std::endl; test_values(1.0f, "float"); test_values(1.0, "double"); _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF); #endif BOOST_ASSERT((_mm_getcsr() & 0x40) == 0); _mm_setcsr(_mm_getcsr() | 0x40); std::cout << "Testing again with Denormals-Are-Zero set" << std::endl; std::cout << "SSE2 control word is: " << std::hex << _mm_getcsr() << std::endl; test_values(1.0f, "float"); test_values(1.0, "double"); // Restore the MMX flags: _mm_setcsr(mmx_flags); #endif }