// Copyright Paul Bristow 2007. // Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // test_uniform.cpp #include #ifdef _MSC_VER # pragma warning(disable: 4127) // conditional expression is constant. # pragma warning(disable: 4100) // unreferenced formal parameter. #endif #include // for real_concept #define BOOST_TEST_MAIN #include // Boost.Test #include #include using boost::math::uniform_distribution; #include #include "test_out_of_range.hpp" #include #include using std::cout; using std::endl; using std::setprecision; #include using std::numeric_limits; template void check_uniform(RealType lower, RealType upper, RealType x, RealType p, RealType q, RealType tol) { BOOST_CHECK_CLOSE_FRACTION( ::boost::math::cdf( uniform_distribution(lower, upper), // distribution. x), // random variable. p, // probability. tol); // tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::cdf( complement( uniform_distribution(lower, upper), // distribution. x)), // random variable. q, // probability complement. tol); // tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::quantile( uniform_distribution(lower, upper), // distribution. p), // probability. x, // random variable. tol); // tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::quantile( complement( uniform_distribution(lower, upper), // distribution. q)), // probability complement. x, // random variable. tol); // tolerance. } // void check_uniform template void test_spots(RealType) { // Basic sanity checks // // These test values were generated for the normal distribution // using the online calculator at // http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm // // Tolerance is just over 5 decimal digits expressed as a fraction: // that's the limit of the test data. RealType tolerance = 2e-5f; cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << "." << endl; using std::exp; // Tests for PDF // BOOST_CHECK_CLOSE_FRACTION( // x == upper pdf(uniform_distribution(0, 1), static_cast(0)), static_cast(1), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == lower pdf(uniform_distribution(0, 1), static_cast(1)), static_cast(1), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x > upper pdf(uniform_distribution(0, 1), static_cast(-1)), static_cast(0), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x < lower pdf(uniform_distribution(0, 1), static_cast(2)), static_cast(0), tolerance); if(std::numeric_limits::has_infinity) { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity() // Note that infinity is not implemented for real_concept, so these tests // are only done for types, like built-in float, double.. that have infinity. // Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error. // #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here. // #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path // of error handling is tested below with BOOST_MATH_CHECK_THROW tests. BOOST_MATH_CHECK_THROW( // x == infinity should NOT be OK. pdf(uniform_distribution(0, 1), static_cast(std::numeric_limits::infinity())), std::domain_error); BOOST_MATH_CHECK_THROW( // x == minus infinity should be OK too. pdf(uniform_distribution(0, 1), static_cast(-std::numeric_limits::infinity())), std::domain_error); } if(std::numeric_limits::has_quiet_NaN) { // BOOST_CHECK tests for NaN using std::numeric_limits<>::has_quiet_NaN() - should throw. BOOST_MATH_CHECK_THROW( pdf(uniform_distribution(0, 1), static_cast(std::numeric_limits::quiet_NaN())), std::domain_error); BOOST_MATH_CHECK_THROW( pdf(uniform_distribution(0, 1), static_cast(-std::numeric_limits::quiet_NaN())), std::domain_error); } // test for x = NaN using std::numeric_limits<>::quiet_NaN() // cdf BOOST_CHECK_EQUAL( // x < lower cdf(uniform_distribution(0, 1), static_cast(-1)), static_cast(0) ); BOOST_CHECK_CLOSE_FRACTION( cdf(uniform_distribution(0, 1), static_cast(0)), static_cast(0), tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(uniform_distribution(0, 1), static_cast(0.5)), static_cast(0.5), tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(uniform_distribution(0, 1), static_cast(0.1)), static_cast(0.1), tolerance); BOOST_CHECK_CLOSE_FRACTION( cdf(uniform_distribution(0, 1), static_cast(0.9)), static_cast(0.9), tolerance); BOOST_CHECK_EQUAL( // x > upper cdf(uniform_distribution(0, 1), static_cast(2)), static_cast(1)); // cdf complement BOOST_CHECK_EQUAL( // x < lower cdf(complement(uniform_distribution(0, 1), static_cast(0))), static_cast(1)); BOOST_CHECK_EQUAL( // x == 0 cdf(complement(uniform_distribution(0, 1), static_cast(0))), static_cast(1)); BOOST_CHECK_CLOSE_FRACTION( // x = 0.1 cdf(complement(uniform_distribution(0, 1), static_cast(0.1))), static_cast(0.9), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x = 0.5 cdf(complement(uniform_distribution(0, 1), static_cast(0.5))), static_cast(0.5), tolerance); BOOST_CHECK_EQUAL( // x == 1 cdf(complement(uniform_distribution(0, 1), static_cast(1))), static_cast(0)); BOOST_CHECK_EQUAL( // x > upper cdf(complement(uniform_distribution(0, 1), static_cast(2))), static_cast(0)); // quantile BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution(0, 1), static_cast(0.9)), static_cast(0.9), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution(0, 1), static_cast(0.1)), static_cast(0.1), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution(0, 1), static_cast(0.5)), static_cast(0.5), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution(0, 1), static_cast(0)), static_cast(0), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(uniform_distribution(0, 1), static_cast(1)), static_cast(1), tolerance); // quantile complement BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution(0, 1), static_cast(0.1))), static_cast(0.9), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution(0, 1), static_cast(0.9))), static_cast(0.1), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution(0, 1), static_cast(0.5))), static_cast(0.5), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution(0, 1), static_cast(0))), static_cast(1), tolerance); BOOST_CHECK_CLOSE_FRACTION( quantile(complement(uniform_distribution(0, 1), static_cast(1))), static_cast(0), tolerance); // Some tests using a different location & scale, neight zero or unity. BOOST_CHECK_CLOSE_FRACTION( // x == mid pdf(uniform_distribution(-1, 2), static_cast(1)), static_cast(0.3333333333333333333333333333333333333333333333333333), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == upper pdf(uniform_distribution(-1, 2), static_cast(+2)), static_cast(0.3333333333333333333333333333333333333333333333333333), // 1 / (2 - -1) = 1/3 tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == lower cdf(uniform_distribution(-1, 2), static_cast(-1)), static_cast(0), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == upper cdf(uniform_distribution(-1, 2), static_cast(0)), static_cast(0.3333333333333333333333333333333333333333333333333333), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == upper cdf(uniform_distribution(-1, 2), static_cast(1)), static_cast(0.6666666666666666666666666666666666666666666666666667), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == lower cdf(uniform_distribution(-1, 2), static_cast(2)), static_cast(1), tolerance); BOOST_CHECK_CLOSE_FRACTION( // x == upper quantile(uniform_distribution(-1, 2), static_cast(0.6666666666666666666666666666666666666666666666666667)), static_cast(1), tolerance); check_uniform( static_cast(0), // lower static_cast(1), // upper static_cast(0.5), // x static_cast(0.5), // p static_cast(1 - 0.5), // q tolerance); // Some Not-standard uniform tests. check_uniform( static_cast(-1), // lower static_cast(1), // upper static_cast(0), // x static_cast(0.5), // p static_cast(1 - 0.5), // q = 1 - p tolerance); check_uniform( static_cast(1), // lower static_cast(3), // upper static_cast(2), // x static_cast(0.5), // p static_cast(1 - 0.5), // q = 1 - p tolerance); check_uniform( static_cast(-1), // lower static_cast(2), // upper static_cast(1), // x static_cast(0.66666666666666666666666666666666666666666667), // p static_cast(0.33333333333333333333333333333333333333333333), // q = 1 - p tolerance); tolerance = (std::max)( boost::math::tools::epsilon(), static_cast(boost::math::tools::epsilon())) * 5; // 5 eps as a fraction. cout << "Tolerance (as fraction) for type " << typeid(RealType).name() << " is " << tolerance << "." << endl; uniform_distribution distu01(0, 1); RealType x = static_cast(0.5); using namespace std; // ADL of std names. // mean: BOOST_CHECK_CLOSE_FRACTION( mean(distu01), static_cast(0.5), tolerance); // variance: BOOST_CHECK_CLOSE_FRACTION( variance(distu01), static_cast(0.0833333333333333333333333333333333333333333), tolerance); // std deviation: BOOST_CHECK_CLOSE_FRACTION( standard_deviation(distu01), sqrt(variance(distu01)), tolerance); // hazard: BOOST_CHECK_CLOSE_FRACTION( hazard(distu01, x), pdf(distu01, x) / cdf(complement(distu01, x)), tolerance); // cumulative hazard: BOOST_CHECK_CLOSE_FRACTION( chf(distu01, x), -log(cdf(complement(distu01, x))), tolerance); // coefficient_of_variation: BOOST_CHECK_CLOSE_FRACTION( coefficient_of_variation(distu01), standard_deviation(distu01) / mean(distu01), tolerance); // mode: BOOST_CHECK_CLOSE_FRACTION( mode(distu01), static_cast(0), tolerance); BOOST_CHECK_CLOSE_FRACTION( median(distu01), static_cast(0.5), tolerance); // skewness: BOOST_CHECK_EQUAL( skewness(distu01), static_cast(0)); // kertosis: BOOST_CHECK_CLOSE_FRACTION( kurtosis(distu01), kurtosis_excess(distu01) + static_cast(3), tolerance); // kertosis excess: BOOST_CHECK_CLOSE_FRACTION( kurtosis_excess(distu01), static_cast(-1.2), tolerance); if(std::numeric_limits::has_infinity) { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity() // Note that infinity is not implemented for real_concept, so these tests // are only done for types, like built-in float, double, long double, that have infinity. // Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error. // #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here. // #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path // of error handling is tested below with BOOST_MATH_CHECK_THROW tests. BOOST_MATH_CHECK_THROW(pdf(distu01, std::numeric_limits::infinity()), std::domain_error); BOOST_MATH_CHECK_THROW(pdf(distu01, -std::numeric_limits::infinity()), std::domain_error); } // test for infinity using std::numeric_limits<>::infinity() else { // real_concept case, does has_infinfity == false, so can't check it throws. // cout << std::numeric_limits::infinity() << ' ' // << (boost::math::fpclassify)(std::numeric_limits::infinity()) << endl; // value of std::numeric_limits::infinity() is zero, so FPclassify is zero, // so (boost::math::isfinite)(std::numeric_limits::infinity()) does not detect infinity. // so these tests would never throw. //BOOST_MATH_CHECK_THROW(pdf(distu01, std::numeric_limits::infinity()), std::domain_error); //BOOST_MATH_CHECK_THROW(pdf(distu01, std::numeric_limits::quiet_NaN()), std::domain_error); // BOOST_MATH_CHECK_THROW(pdf(distu01, boost::math::tools::max_value() * 2), std::domain_error); // Doesn't throw. BOOST_CHECK_EQUAL(pdf(distu01, boost::math::tools::max_value()), 0); } // Special cases: BOOST_CHECK(pdf(distu01, 0) == 1); BOOST_CHECK(cdf(distu01, 0) == 0); BOOST_CHECK(pdf(distu01, 1) == 1); BOOST_CHECK(cdf(distu01, 1) == 1); BOOST_CHECK(cdf(complement(distu01, 0)) == 1); BOOST_CHECK(cdf(complement(distu01, 1)) == 0); BOOST_CHECK(quantile(distu01, 0) == 0); BOOST_CHECK(quantile(complement(distu01, 0)) == 1); BOOST_CHECK(quantile(distu01, 1) == 1); BOOST_CHECK(quantile(complement(distu01, 1)) == 0); // Error checks: if(std::numeric_limits::has_quiet_NaN) { // BOOST_CHECK tests for constructing with quiet_NaN (not for real_concept, for example - see notes above). BOOST_MATH_CHECK_THROW(uniform_distribution(0, std::numeric_limits::quiet_NaN()), std::domain_error); BOOST_MATH_CHECK_THROW(uniform_distribution(0, -std::numeric_limits::quiet_NaN()), std::domain_error); } BOOST_MATH_CHECK_THROW(uniform_distribution(1, 0), std::domain_error); // lower > upper! BOOST_MATH_CHECK_THROW(uniform_distribution(1, 1), std::domain_error); // lower == upper! check_out_of_range >(1, 5); } // template void test_spots(RealType) BOOST_AUTO_TEST_CASE( test_main ) { // Check that can construct uniform distribution using the two convenience methods: using namespace boost::math; uniform unistd; // Using typedef // == uniform_distribution unistd; BOOST_CHECK_EQUAL(unistd.lower(), 0); // Check defaults. BOOST_CHECK_EQUAL(unistd.upper(), 1); uniform_distribution<> myu01(0, 1); // Using default RealType double. BOOST_CHECK_EQUAL(myu01.lower(), 0); // Check defaults again. BOOST_CHECK_EQUAL(myu01.upper(), 1); // Test on extreme values of random variate x, using just double because it has numeric_limit infinity etc.. // No longer allow x to be + or - infinity, then these tests should throw. BOOST_MATH_CHECK_THROW(pdf(unistd, +std::numeric_limits::infinity()), std::domain_error); // x = + infinity BOOST_MATH_CHECK_THROW(pdf(unistd, -std::numeric_limits::infinity()), std::domain_error); // x = - infinity BOOST_MATH_CHECK_THROW(cdf(unistd, +std::numeric_limits::infinity()), std::domain_error); // x = + infinity BOOST_MATH_CHECK_THROW(cdf(unistd, -std::numeric_limits::infinity()), std::domain_error); // x = - infinity BOOST_CHECK_EQUAL(pdf(unistd, +(std::numeric_limits::max)()), 0); // x = + max BOOST_CHECK_EQUAL(pdf(unistd, -(std::numeric_limits::min)()), 0); // x = - min BOOST_CHECK_EQUAL(cdf(unistd, +(std::numeric_limits::max)()), 1); // x = + max BOOST_CHECK_EQUAL(cdf(unistd, -(std::numeric_limits::min)()), 0); // x = - min #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(uniform_distribution<> zinf(0, +std::numeric_limits::infinity()), std::domain_error); // zero to infinity using default RealType double. #else BOOST_MATH_CHECK_THROW(uniform_distribution<>(0, +std::numeric_limits::infinity()), std::domain_error); // zero to infinity using default RealType double. #endif uniform_distribution<> zmax(0, +(std::numeric_limits::max)()); // zero to max using default RealType double. BOOST_CHECK_EQUAL(zmax.lower(), 0); // Check defaults again. BOOST_CHECK_EQUAL(zmax.upper(), +(std::numeric_limits::max)()); BOOST_CHECK_EQUAL(pdf(zmax, -1), 0); // pdf is 1/(0 - max) = almost zero for all x BOOST_CHECK_EQUAL(pdf(zmax, 0), (std::numeric_limits::min)()/4); // x = BOOST_CHECK_EQUAL(pdf(zmax, 1), (std::numeric_limits::min)()/4); // x = BOOST_MATH_CHECK_THROW(pdf(zmax, +std::numeric_limits::infinity()), std::domain_error); // pdf is 1/(0 - infinity) = zero for all x BOOST_MATH_CHECK_THROW(pdf(zmax, -std::numeric_limits::infinity()), std::domain_error); BOOST_CHECK_EQUAL(pdf(zmax, +(std::numeric_limits::max)()), (std::numeric_limits::min)()/4); // x = BOOST_CHECK_EQUAL(pdf(zmax, -(std::numeric_limits::max)()), 0); // x = #ifndef BOOST_NO_EXCEPTIONS // Ensure NaN throws an exception. BOOST_MATH_CHECK_THROW(uniform_distribution<> zNaN(0, std::numeric_limits::quiet_NaN()), std::domain_error); BOOST_MATH_CHECK_THROW(pdf(unistd, std::numeric_limits::quiet_NaN()), std::domain_error); #else BOOST_MATH_CHECK_THROW(uniform_distribution<>(0, std::numeric_limits::quiet_NaN()), std::domain_error); BOOST_MATH_CHECK_THROW(pdf(unistd, std::numeric_limits::quiet_NaN()), std::domain_error); #endif // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 % test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 % #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::endl; #endif } // BOOST_AUTO_TEST_CASE( test_main ) /* Output: Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_uniform.exe" Running 1 test case... Tolerance for type float is 2e-005. Tolerance (as fraction) for type float is 5.96046e-007. Tolerance for type double is 2e-005. Tolerance (as fraction) for type double is 1.11022e-015. Tolerance for type long double is 2e-005. Tolerance (as fraction) for type long double is 1.11022e-015. Tolerance for type class boost::math::concepts::real_concept is 2e-005. Tolerance (as fraction) for type class boost::math::concepts::real_concept is 1.11022e-015. *** No errors detected */