123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- /*
- ** $Id: lopcodes.h,v 1.149 2016/07/19 17:12:21 roberto Exp $
- ** Opcodes for Lua virtual machine
- ** See Copyright Notice in lua.h
- */
- #ifndef lopcodes_h
- #define lopcodes_h
- #include "llimits.h"
- /*===========================================================================
- We assume that instructions are unsigned numbers.
- All instructions have an opcode in the first 6 bits.
- Instructions can have the following fields:
- 'A' : 8 bits
- 'B' : 9 bits
- 'C' : 9 bits
- 'Ax' : 26 bits ('A', 'B', and 'C' together)
- 'Bx' : 18 bits ('B' and 'C' together)
- 'sBx' : signed Bx
- A signed argument is represented in excess K; that is, the number
- value is the unsigned value minus K. K is exactly the maximum value
- for that argument (so that -max is represented by 0, and +max is
- represented by 2*max), which is half the maximum for the corresponding
- unsigned argument.
- ===========================================================================*/
- enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
- /*
- ** size and position of opcode arguments.
- */
- #define SIZE_C 9
- #define SIZE_B 9
- #define SIZE_Bx (SIZE_C + SIZE_B)
- #define SIZE_A 8
- #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
- #define SIZE_OP 6
- #define POS_OP 0
- #define POS_A (POS_OP + SIZE_OP)
- #define POS_C (POS_A + SIZE_A)
- #define POS_B (POS_C + SIZE_C)
- #define POS_Bx POS_C
- #define POS_Ax POS_A
- /*
- ** limits for opcode arguments.
- ** we use (signed) int to manipulate most arguments,
- ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
- */
- #if SIZE_Bx < LUAI_BITSINT-1
- #define MAXARG_Bx ((1<<SIZE_Bx)-1)
- #define MAXARG_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
- #else
- #define MAXARG_Bx MAX_INT
- #define MAXARG_sBx MAX_INT
- #endif
- #if SIZE_Ax < LUAI_BITSINT-1
- #define MAXARG_Ax ((1<<SIZE_Ax)-1)
- #else
- #define MAXARG_Ax MAX_INT
- #endif
- #define MAXARG_A ((1<<SIZE_A)-1)
- #define MAXARG_B ((1<<SIZE_B)-1)
- #define MAXARG_C ((1<<SIZE_C)-1)
- /* creates a mask with 'n' 1 bits at position 'p' */
- #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
- /* creates a mask with 'n' 0 bits at position 'p' */
- #define MASK0(n,p) (~MASK1(n,p))
- /*
- ** the following macros help to manipulate instructions
- */
- #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
- #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
- ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
- #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0)))
- #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
- ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
- #define GETARG_A(i) getarg(i, POS_A, SIZE_A)
- #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
- #define GETARG_B(i) getarg(i, POS_B, SIZE_B)
- #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
- #define GETARG_C(i) getarg(i, POS_C, SIZE_C)
- #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
- #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
- #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
- #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
- #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
- #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
- #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
- #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
- | (cast(Instruction, a)<<POS_A) \
- | (cast(Instruction, b)<<POS_B) \
- | (cast(Instruction, c)<<POS_C))
- #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
- | (cast(Instruction, a)<<POS_A) \
- | (cast(Instruction, bc)<<POS_Bx))
- #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
- | (cast(Instruction, a)<<POS_Ax))
- /*
- ** Macros to operate RK indices
- */
- /* this bit 1 means constant (0 means register) */
- #define BITRK (1 << (SIZE_B - 1))
- /* test whether value is a constant */
- #define ISK(x) ((x) & BITRK)
- /* gets the index of the constant */
- #define INDEXK(r) ((int)(r) & ~BITRK)
- #if !defined(MAXINDEXRK) /* (for debugging only) */
- #define MAXINDEXRK (BITRK - 1)
- #endif
- /* code a constant index as a RK value */
- #define RKASK(x) ((x) | BITRK)
- /*
- ** invalid register that fits in 8 bits
- */
- #define NO_REG MAXARG_A
- /*
- ** R(x) - register
- ** Kst(x) - constant (in constant table)
- ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
- */
- /*
- ** grep "ORDER OP" if you change these enums
- */
- typedef enum {
- /*----------------------------------------------------------------------
- name args description
- ------------------------------------------------------------------------*/
- OP_MOVE,/* A B R(A) := R(B) */
- OP_LOADK,/* A Bx R(A) := Kst(Bx) */
- OP_LOADKX,/* A R(A) := Kst(extra arg) */
- OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
- OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
- OP_GETUPVAL,/* A B R(A) := UpValue[B] */
- OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */
- OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
- OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */
- OP_SETUPVAL,/* A B UpValue[B] := R(A) */
- OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
- OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
- OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
- OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
- OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
- OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
- OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
- OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
- OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
- OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */
- OP_BAND,/* A B C R(A) := RK(B) & RK(C) */
- OP_BOR,/* A B C R(A) := RK(B) | RK(C) */
- OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */
- OP_SHL,/* A B C R(A) := RK(B) << RK(C) */
- OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */
- OP_UNM,/* A B R(A) := -R(B) */
- OP_BNOT,/* A B R(A) := ~R(B) */
- OP_NOT,/* A B R(A) := not R(B) */
- OP_LEN,/* A B R(A) := length of R(B) */
- OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
- OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */
- OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
- OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
- OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
- OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
- OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
- OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
- OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
- OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
- OP_FORLOOP,/* A sBx R(A)+=R(A+2);
- if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
- OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
- OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
- OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
- OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
- OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
- OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
- OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
- } OpCode;
- #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
- /*===========================================================================
- Notes:
- (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
- set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
- OP_SETLIST) may use 'top'.
- (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
- set top (like in OP_CALL with C == 0).
- (*) In OP_RETURN, if (B == 0) then return up to 'top'.
- (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next
- 'instruction' is EXTRAARG(real C).
- (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
- (*) For comparisons, A specifies what condition the test should accept
- (true or false).
- (*) All 'skips' (pc++) assume that next instruction is a jump.
- ===========================================================================*/
- /*
- ** masks for instruction properties. The format is:
- ** bits 0-1: op mode
- ** bits 2-3: C arg mode
- ** bits 4-5: B arg mode
- ** bit 6: instruction set register A
- ** bit 7: operator is a test (next instruction must be a jump)
- */
- enum OpArgMask {
- OpArgN, /* argument is not used */
- OpArgU, /* argument is used */
- OpArgR, /* argument is a register or a jump offset */
- OpArgK /* argument is a constant or register/constant */
- };
- LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
- #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
- #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
- #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
- #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
- #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
- LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
- /* number of list items to accumulate before a SETLIST instruction */
- #define LFIELDS_PER_FLUSH 50
- #endif
|