123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- #include "position.h"
- #include <algorithm>
- #include <string>
- #include <cmath>
- #include "../../common/string_util.h"
- static const float position_eps = 0.0001f;
- std::string to_string(const glm::vec4 &position) {
- return StringFormat("(%.3f, %.3f, %.3f, %.3f)", position.x,position.y,position.z,position.w);
- }
- std::string to_string(const glm::vec3 &position){
- return StringFormat("(%.3f, %.3f, %.3f)", position.x,position.y,position.z);
- }
- std::string to_string(const glm::vec2 &position){
- return StringFormat("(%.3f, %.3f)", position.x,position.y);
- }
- bool IsOrigin(const glm::vec2 &position) {
- return glm::dot(position, position) == 0;
- }
- bool IsOrigin(const glm::vec3 &position) {
- return glm::dot(position, position) == 0;
- }
- bool IsOrigin(const glm::vec4 &position) {
- return IsOrigin(glm::vec3(position));
- }
- /**
- * Produces the non square root'ed distance between the two points within the XY plane.
- */
- float DistanceSquared(const glm::vec2& point1, const glm::vec2& point2) {
- auto diff = point1 - point2;
- return glm::dot(diff, diff);
- }
- /**
- * Produces the distance between the two points on the XY plane.
- */
- float Distance(const glm::vec2& point1, const glm::vec2& point2) {
- return std::sqrt(DistanceSquared(point1, point2));
- }
- /**
- * Produces the non square root'ed distance between the two points.
- */
- float DistanceSquared(const glm::vec3& point1, const glm::vec3& point2) {
- auto diff = point1 - point2;
- return glm::dot(diff, diff);
- }
- /**
- * Produces the non square root'ed distance between the two points.
- */
- float DistanceSquared(const glm::vec4& point1, const glm::vec4& point2) {
- return DistanceSquared(static_cast<glm::vec3>(point1), static_cast<glm::vec3>(point2));
- }
- /**
- * Produces the distance between the two points.
- */
- float Distance(const glm::vec3& point1, const glm::vec3& point2) {
- return std::sqrt(DistanceSquared(point1, point2));
- }
- /**
- * Produces the distance between the two points.
- */
- float Distance(const glm::vec4& point1, const glm::vec4& point2) {
- return Distance(static_cast<glm::vec3>(point1), static_cast<glm::vec3>(point2));
- }
- /**
- * Produces the distance between the two points within the XY plane.
- */
- float DistanceNoZ(const glm::vec3& point1, const glm::vec3& point2) {
- return Distance(static_cast<glm::vec2>(point1),static_cast<glm::vec2>(point2));
- }
- /**
- * Produces the distance between the two points within the XY plane.
- */
- float DistanceNoZ(const glm::vec4& point1, const glm::vec4& point2) {
- return Distance(static_cast<glm::vec2>(point1),static_cast<glm::vec2>(point2));
- }
- /**
- * Produces the non square root'ed distance between the two points within the XY plane.
- */
- float DistanceSquaredNoZ(const glm::vec3& point1, const glm::vec3& point2) {
- return DistanceSquared(static_cast<glm::vec2>(point1),static_cast<glm::vec2>(point2));
- }
- /**
- * Produces the non square root'ed distance between the two points within the XY plane.
- */
- float DistanceSquaredNoZ(const glm::vec4& point1, const glm::vec4& point2) {
- return DistanceSquared(static_cast<glm::vec2>(point1),static_cast<glm::vec2>(point2));
- }
- /**
- * Determines if 'position' is within (inclusive) the axis aligned
- * box (3 dimensional) formed from the points minimum and maximum.
- */
- bool IsWithinAxisAlignedBox(const glm::vec3 &position, const glm::vec3 &minimum, const glm::vec3 &maximum) {
- auto actualMinimum = glm::vec3(std::min(minimum.x, maximum.x), std::min(minimum.y, maximum.y),std::min(minimum.z, maximum.z));
- auto actualMaximum = glm::vec3(std::max(minimum.x, maximum.x), std::max(minimum.y, maximum.y),std::max(minimum.z, maximum.z));
- bool xcheck = position.x >= actualMinimum.x && position.x <= actualMaximum.x;
- bool ycheck = position.y >= actualMinimum.y && position.y <= actualMaximum.y;
- bool zcheck = position.z >= actualMinimum.z && position.z <= actualMaximum.z;
- return xcheck && ycheck && zcheck;
- }
- /**
- * Determines if 'position' is within (inclusive) the axis aligned
- * box (2 dimensional) formed from the points minimum and maximum.
- */
- bool IsWithinAxisAlignedBox(const glm::vec2 &position, const glm::vec2 &minimum, const glm::vec2 &maximum) {
- auto actualMinimum = glm::vec2(std::min(minimum.x, maximum.x), std::min(minimum.y, maximum.y));
- auto actualMaximum = glm::vec2(std::max(minimum.x, maximum.x), std::max(minimum.y, maximum.y));
- bool xcheck = position.x >= actualMinimum.x && position.x <= actualMaximum.x;
- bool ycheck = position.y >= actualMinimum.y && position.y <= actualMaximum.y;
- return xcheck && ycheck;
- }
- /**
- * Gives the heading directly 180 degrees from the
- * current heading.
- * Takes the EQfloat from the glm::vec4 and returns
- * an EQFloat.
- */
- float GetReciprocalHeading(const glm::vec4& point1) {
- return GetReciprocalHeading(point1.w);
- }
- /**
- * Gives the heading directly 180 degrees from the
- * current heading.
- * Takes an EQfloat and returns an EQFloat.
- */
- float GetReciprocalHeading(const float heading)
- {
- float result = 0;
- // Convert to radians
- float h = (heading / 512.0f) * 6.283184f;
- // Calculate the reciprocal heading in radians
- result = h + 3.141592f;
- // Convert back to eq heading from radians
- result = (result / 6.283184f) * 512.0f;
- return result;
- }
- bool IsHeadingEqual(const float h1, const float h2)
- {
- return std::abs(h2 - h1) < 0.01f;
- }
- bool IsPositionEqual(const glm::vec2 &p1, const glm::vec2 &p2)
- {
- return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps;
- }
- bool IsPositionEqual(const glm::vec3 &p1, const glm::vec3 &p2)
- {
- return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps && std::abs(p1.z - p2.z) < position_eps;
- }
- bool IsPositionEqual(const glm::vec4 &p1, const glm::vec4 &p2)
- {
- return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps && std::abs(p1.z - p2.z) < position_eps;
- }
- bool IsPositionEqualWithinCertainZ(const glm::vec3 &p1, const glm::vec3 &p2, float z_eps) {
- return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps && std::abs(p1.z - p2.z) < z_eps;
- }
- bool IsPositionEqualWithinCertainZ(const glm::vec4 &p1, const glm::vec4 &p2, float z_eps) {
- return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps && std::abs(p1.z - p2.z) < z_eps;
- }
- bool IsPositionWithinSimpleCylinder(const glm::vec3 &p1, const glm::vec3 &cylinder_center, float cylinder_radius, float cylinder_height)
- {
- //If we're outside the height of cylinder then we're not in it (duh)
- auto d = std::abs(p1.z - cylinder_center.z);
- if (d > cylinder_height / 2.0) {
- return false;
- }
- glm::vec2 p1d(p1.x, p1.y);
- glm::vec2 ccd(cylinder_center.x, cylinder_center.y);
- //If we're outside the radius of the cylinder then we're not in it (also duh)
- d = Distance(p1d, ccd);
- if (d > cylinder_radius) {
- return false;
- }
- return true;
- }
- bool IsPositionWithinSimpleCylinder(const glm::vec4 &p1, const glm::vec4 &cylinder_center, float cylinder_radius, float cylinder_height)
- {
- //If we're outside the height of cylinder then we're not in it (duh)
- auto d = std::abs(p1.z - cylinder_center.z);
- if (d > cylinder_height / 2.0) {
- return false;
- }
- glm::vec2 p1d(p1.x, p1.y);
- glm::vec2 ccd(cylinder_center.x, cylinder_center.y);
- //If we're outside the radius of the cylinder then we're not in it (also duh)
- d = Distance(p1d, ccd);
- if (d > cylinder_radius) {
- return false;
- }
- return true;
- }
- float CalculateHeadingAngleBetweenPositions(float x1, float y1, float x2, float y2)
- {
- float y_diff = std::abs(y1 - y2);
- float x_diff = std::abs(x1 - x2);
- if (y_diff < 0.0000009999999974752427)
- y_diff = 0.0000009999999974752427;
- float angle = atan2(x_diff, y_diff) * 180.0f * 0.3183099014828645f; // angle, nice "pi"
- // return the right thing based on relative quadrant
- // I'm sure this could be improved for readability, but whatever
- if (y1 >= y2) {
- if (x2 >= x1)
- return (90.0f - angle + 90.0f) * 511.5f * 0.0027777778f;
- if (x2 <= x1)
- return (angle + 180.0f) * 511.5f * 0.0027777778f;
- }
- if (y1 > y2 || x2 > x1)
- return angle * 511.5f * 0.0027777778f;
- else
- return (90.0f - angle + 270.0f) * 511.5f * 0.0027777778f;
- }
|