explicit_stepper_base.hpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. /*
  2. [auto_generated]
  3. boost/numeric/odeint/stepper/base/explicit_stepper_base.hpp
  4. [begin_description]
  5. Base class for all explicit Runge Kutta steppers.
  6. [end_description]
  7. Copyright 2010-2013 Karsten Ahnert
  8. Copyright 2010-2012 Mario Mulansky
  9. Copyright 2012 Christoph Koke
  10. Distributed under the Boost Software License, Version 1.0.
  11. (See accompanying file LICENSE_1_0.txt or
  12. copy at http://www.boost.org/LICENSE_1_0.txt)
  13. */
  14. #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED
  15. #define BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED
  16. #include <boost/utility/enable_if.hpp>
  17. #include <boost/type_traits/is_same.hpp>
  18. #include <boost/numeric/odeint/util/bind.hpp>
  19. #include <boost/numeric/odeint/util/unwrap_reference.hpp>
  20. #include <boost/numeric/odeint/util/state_wrapper.hpp>
  21. #include <boost/numeric/odeint/util/resizer.hpp>
  22. #include <boost/numeric/odeint/util/is_resizeable.hpp>
  23. #include <boost/numeric/odeint/stepper/stepper_categories.hpp>
  24. #include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>
  25. namespace boost {
  26. namespace numeric {
  27. namespace odeint {
  28. /*
  29. * base class for explicit steppers
  30. * models the stepper concept
  31. *
  32. * this class provides the following overloads
  33. * do_step( sys , x , t , dt )
  34. * do_step( sys , in , t , out , dt )
  35. * do_step( sys , x , dxdt_in , t , dt )
  36. * do_step( sys , in , dxdt_in , t , out , dt )
  37. */
  38. template<
  39. class Stepper ,
  40. unsigned short Order ,
  41. class State ,
  42. class Value ,
  43. class Deriv ,
  44. class Time ,
  45. class Algebra ,
  46. class Operations ,
  47. class Resizer
  48. >
  49. class explicit_stepper_base : public algebra_stepper_base< Algebra , Operations >
  50. {
  51. public:
  52. #ifndef DOXYGEN_SKIP
  53. typedef explicit_stepper_base< Stepper , Order , State , Value , Deriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type;
  54. #endif // DOXYGEN_SKIP
  55. typedef State state_type;
  56. typedef Value value_type;
  57. typedef Deriv deriv_type;
  58. typedef Time time_type;
  59. typedef Resizer resizer_type;
  60. typedef Stepper stepper_type;
  61. typedef stepper_tag stepper_category;
  62. typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
  63. typedef typename algebra_stepper_base_type::algebra_type algebra_type;
  64. typedef typename algebra_stepper_base_type::operations_type operations_type;
  65. typedef unsigned short order_type;
  66. #ifndef DOXYGEN_SKIP
  67. typedef state_wrapper< state_type > wrapped_state_type;
  68. typedef state_wrapper< deriv_type > wrapped_deriv_type;
  69. #endif // DOXYGEN_SKIP
  70. static const order_type order_value = Order;
  71. explicit_stepper_base( const algebra_type &algebra = algebra_type() )
  72. : algebra_stepper_base_type( algebra )
  73. { }
  74. /**
  75. * \return Returns the order of the stepper.
  76. */
  77. order_type order( void ) const
  78. {
  79. return order_value;
  80. }
  81. /*
  82. * Version 1 : do_step( sys , x , t , dt )
  83. *
  84. * the two overloads are needed in order to solve the forwarding problem
  85. */
  86. template< class System , class StateInOut >
  87. void do_step( System system , StateInOut &x , time_type t , time_type dt )
  88. {
  89. do_step_v1( system , x , t , dt );
  90. }
  91. /**
  92. * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
  93. */
  94. template< class System , class StateInOut >
  95. void do_step( System system , const StateInOut &x , time_type t , time_type dt )
  96. {
  97. do_step_v1( system , x , t , dt );
  98. }
  99. /*
  100. * Version 2 : do_step( sys , x , dxdt , t , dt )
  101. *
  102. * this version does not solve the forwarding problem, boost.range can not be used
  103. *
  104. * the disable is needed to avoid ambiguous overloads if state_type = time_type
  105. */
  106. template< class System , class StateInOut , class DerivIn >
  107. typename boost::disable_if< boost::is_same< DerivIn , time_type > , void >::type
  108. do_step( System system , StateInOut &x , const DerivIn &dxdt , time_type t , time_type dt )
  109. {
  110. this->stepper().do_step_impl( system , x , dxdt , t , x , dt );
  111. }
  112. /*
  113. * named Version 2: do_step_dxdt_impl( sys , in , dxdt , t , dt )
  114. *
  115. * this version is needed when this stepper is used for initializing
  116. * multistep stepper like adams-bashforth. Hence we provide an explicitely
  117. * named version that is not disabled. Meant for internal use only.
  118. */
  119. template < class System, class StateInOut, class DerivIn >
  120. void do_step_dxdt_impl( System system, StateInOut &x, const DerivIn &dxdt,
  121. time_type t, time_type dt )
  122. {
  123. this->stepper().do_step_impl( system , x , dxdt , t , x , dt );
  124. }
  125. /*
  126. * Version 3 : do_step( sys , in , t , out , dt )
  127. *
  128. * this version does not solve the forwarding problem, boost.range can not be used
  129. */
  130. template< class System , class StateIn , class StateOut >
  131. void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
  132. {
  133. typename odeint::unwrap_reference< System >::type &sys = system;
  134. m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl<StateIn> , detail::ref( *this ) , detail::_1 ) );
  135. sys( in , m_dxdt.m_v ,t );
  136. this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , dt );
  137. }
  138. /*
  139. * Version 4 : do_step( sys , in , dxdt , t , out , dt )
  140. *
  141. * this version does not solve the forwarding problem, boost.range can not be used
  142. */
  143. template< class System , class StateIn , class DerivIn , class StateOut >
  144. void do_step( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
  145. {
  146. this->stepper().do_step_impl( system , in , dxdt , t , out , dt );
  147. }
  148. /*
  149. * named Version 4: do_step_dxdt_impl( sys , in , dxdt , t , out, dt )
  150. *
  151. * this version is needed when this stepper is used for initializing
  152. * multistep stepper like adams-bashforth. Hence we provide an explicitely
  153. * named version. Meant for internal use only.
  154. */
  155. template < class System, class StateIn, class DerivIn, class StateOut >
  156. void do_step_dxdt_impl( System system, const StateIn &in,
  157. const DerivIn &dxdt, time_type t, StateOut &out,
  158. time_type dt )
  159. {
  160. this->stepper().do_step_impl( system , in , dxdt , t , out , dt );
  161. }
  162. template< class StateIn >
  163. void adjust_size( const StateIn &x )
  164. {
  165. resize_impl( x );
  166. }
  167. private:
  168. stepper_type& stepper( void )
  169. {
  170. return *static_cast< stepper_type* >( this );
  171. }
  172. const stepper_type& stepper( void ) const
  173. {
  174. return *static_cast< const stepper_type* >( this );
  175. }
  176. template< class StateIn >
  177. bool resize_impl( const StateIn &x )
  178. {
  179. return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
  180. }
  181. template< class System , class StateInOut >
  182. void do_step_v1( System system , StateInOut &x , time_type t , time_type dt )
  183. {
  184. typename odeint::unwrap_reference< System >::type &sys = system;
  185. m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) );
  186. sys( x , m_dxdt.m_v ,t );
  187. this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , dt );
  188. }
  189. resizer_type m_resizer;
  190. protected:
  191. wrapped_deriv_type m_dxdt;
  192. };
  193. /******* DOXYGEN *********/
  194. /**
  195. * \class explicit_stepper_base
  196. * \brief Base class for explicit steppers without step size control and without dense output.
  197. *
  198. * This class serves as the base class for all explicit steppers with algebra and operations.
  199. * Step size control and error estimation as well as dense output are not provided. explicit_stepper_base
  200. * is used as the interface in a CRTP (currently recurring template pattern). In order to work
  201. * correctly the parent class needs to have a method `do_step_impl( system , in , dxdt_in , t , out , dt )`.
  202. * This is method is used by explicit_stepper_base. explicit_stepper_base derives from
  203. * algebra_stepper_base. An example how this class can be used is
  204. *
  205. * \code
  206. * template< class State , class Value , class Deriv , class Time , class Algebra , class Operations , class Resizer >
  207. * class custom_euler : public explicit_stepper_base< 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer >
  208. * {
  209. * public:
  210. *
  211. * typedef explicit_stepper_base< 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > base_type;
  212. *
  213. * custom_euler( const Algebra &algebra = Algebra() ) { }
  214. *
  215. * template< class Sys , class StateIn , class DerivIn , class StateOut >
  216. * void do_step_impl( Sys sys , const StateIn &in , const DerivIn &dxdt , Time t , StateOut &out , Time dt )
  217. * {
  218. * m_algebra.for_each3( out , in , dxdt , Operations::scale_sum2< Value , Time >( 1.0 , dt );
  219. * }
  220. *
  221. * template< class State >
  222. * void adjust_size( const State &x )
  223. * {
  224. * base_type::adjust_size( x );
  225. * }
  226. * };
  227. * \endcode
  228. *
  229. * For the Stepper concept only the `do_step( sys , x , t , dt )` needs to be implemented. But this class
  230. * provides additional `do_step` variants since the stepper is explicit. These methods can be used to increase
  231. * the performance in some situation, for example if one needs to analyze `dxdt` during each step. In this case
  232. * one can use
  233. *
  234. * \code
  235. * sys( x , dxdt , t );
  236. * stepper.do_step( sys , x , dxdt , t , dt ); // the value of dxdt is used here
  237. * t += dt;
  238. * \endcode
  239. *
  240. * In detail explicit_stepper_base provides the following `do_step` variants
  241. * - `do_step( sys , x , t , dt )` - The classical `do_step` method needed to fulfill the Stepper concept. The state is updated in-place.
  242. * A type modelling a Boost.Range can be used for x.
  243. * - `do_step( sys , in , t , out , dt )` - This method updates the state out-of-place, hence the result of the step is stored in `out`.
  244. * - `do_step( sys , x , dxdt , t , dt )` - This method updates the state in-place, but the derivative at the point `t` must be
  245. * explicitly passed in `dxdt`. For an example see the code snippet above.
  246. * - `do_step( sys , in , dxdt , t , out , dt )` - This method update the state out-of-place and expects that the derivative at the point
  247. * `t` is explicitly passed in `dxdt`. It is a combination of the two `do_step` methods above.
  248. *
  249. * \note The system is always passed as value, which might result in poor performance if it contains data. In this case it can be used with `boost::ref`
  250. * or `std::ref`, for example `stepper.do_step( boost::ref( sys ) , x , t , dt );`
  251. *
  252. * \note The time `t` is not advanced by the stepper. This has to done manually, or by the appropriate `integrate` routines or `iterator`s.
  253. *
  254. * \tparam Stepper The stepper on which this class should work. It is used via CRTP, hence explicit_stepper_base
  255. * provides the interface for the Stepper.
  256. * \tparam Order The order of the stepper.
  257. * \tparam State The state type for the stepper.
  258. * \tparam Value The value type for the stepper. This should be a floating point type, like float,
  259. * double, or a multiprecision type. It must not necessary be the value_type of the State. For example
  260. * the State can be a `vector< complex< double > >` in this case the Value must be double.
  261. * The default value is double.
  262. * \tparam Deriv The type representing time derivatives of the state type. It is usually the same type as the
  263. * state type, only if used with Boost.Units both types differ.
  264. * \tparam Time The type representing the time. Usually the same type as the value type. When Boost.Units is
  265. * used, this type has usually a unit.
  266. * \tparam Algebra The algebra type which must fulfill the Algebra Concept.
  267. * \tparam Operations The type for the operations which must fulfill the Operations Concept.
  268. * \tparam Resizer The resizer policy class.
  269. */
  270. /**
  271. * \fn explicit_stepper_base::explicit_stepper_base( const algebra_type &algebra )
  272. * \brief Constructs a explicit_stepper_base class. This constructor can be used as a default
  273. * constructor if the algebra has a default constructor.
  274. * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
  275. */
  276. /**
  277. * \fn explicit_stepper_base::order_type order( void ) const
  278. * \return Returns the order of the stepper.
  279. */
  280. /**
  281. * \fn explicit_stepper_base::do_step( System system , StateInOut &x , time_type t , time_type dt )
  282. * \brief This method performs one step. It transforms the result in-place.
  283. *
  284. * \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
  285. * Simple System concept.
  286. * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
  287. * \param t The value of the time, at which the step should be performed.
  288. * \param dt The step size.
  289. */
  290. /**
  291. * \fn explicit_stepper_base::do_step( System system , StateInOut &x , const DerivIn &dxdt , time_type t , time_type dt )
  292. * \brief The method performs one step. Additionally to the other method
  293. * the derivative of x is also passed to this method. It is supposed to be used in the following way:
  294. *
  295. * \code
  296. * sys( x , dxdt , t );
  297. * stepper.do_step( sys , x , dxdt , t , dt );
  298. * \endcode
  299. *
  300. * The result is updated in place in x. This method is disabled if Time and Deriv are of the same type. In this
  301. * case the method could not be distinguished from other `do_step` versions.
  302. *
  303. * \note This method does not solve the forwarding problem.
  304. *
  305. * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
  306. * Simple System concept.
  307. * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
  308. * \param dxdt The derivative of x at t.
  309. * \param t The value of the time, at which the step should be performed.
  310. * \param dt The step size.
  311. */
  312. /**
  313. * \fn void explicit_stepper_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
  314. * \brief The method performs one step. The state of the ODE is updated out-of-place.
  315. * \note This method does not solve the forwarding problem.
  316. *
  317. * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
  318. * Simple System concept.
  319. * \param in The state of the ODE which should be solved. in is not modified in this method
  320. * \param t The value of the time, at which the step should be performed.
  321. * \param out The result of the step is written in out.
  322. * \param dt The step size.
  323. */
  324. /**
  325. * \fn void explicit_stepper_base::do_step( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
  326. * \brief The method performs one step. The state of the ODE is updated out-of-place.
  327. * Furthermore, the derivative of x at t is passed to the stepper.
  328. * It is supposed to be used in the following way:
  329. *
  330. * \code
  331. * sys( in , dxdt , t );
  332. * stepper.do_step( sys , in , dxdt , t , out , dt );
  333. * \endcode
  334. *
  335. * \note This method does not solve the forwarding problem.
  336. *
  337. * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
  338. * Simple System concept.
  339. * \param in The state of the ODE which should be solved. in is not modified in this method
  340. * \param dxdt The derivative of x at t.
  341. * \param t The value of the time, at which the step should be performed.
  342. * \param out The result of the step is written in out.
  343. * \param dt The step size.
  344. */
  345. /**
  346. * \fn void explicit_stepper_base::adjust_size( const StateIn &x )
  347. * \brief Adjust the size of all temporaries in the stepper manually.
  348. * \param x A state from which the size of the temporaries to be resized is deduced.
  349. */
  350. } // odeint
  351. } // numeric
  352. } // boost
  353. #endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_STEPPER_BASE_HPP_INCLUDED