123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- #ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP
- #define BOOST_PYTHON_SLICE_JDB20040105_HPP
- // Copyright (c) 2004 Jonathan Brandmeyer
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #include <boost/python/detail/prefix.hpp>
- #include <boost/config.hpp>
- #include <boost/python/object.hpp>
- #include <boost/python/extract.hpp>
- #include <boost/python/converter/pytype_object_mgr_traits.hpp>
- #include <boost/iterator/iterator_traits.hpp>
- #include <iterator>
- #include <algorithm>
- namespace boost { namespace python {
- namespace detail
- {
- class BOOST_PYTHON_DECL slice_base : public object
- {
- public:
- // Get the Python objects associated with the slice. In principle, these
- // may be any arbitrary Python type, but in practice they are usually
- // integers. If one or more parameter is ommited in the Python expression
- // that created this slice, than that parameter is None here, and compares
- // equal to a default-constructed boost::python::object.
- // If a user-defined type wishes to support slicing, then support for the
- // special meaning associated with negative indices is up to the user.
- object start() const;
- object stop() const;
- object step() const;
-
- protected:
- explicit slice_base(PyObject*, PyObject*, PyObject*);
- BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)
- };
- }
- class slice : public detail::slice_base
- {
- typedef detail::slice_base base;
- public:
- // Equivalent to slice(::)
- slice() : base(0,0,0) {}
- // Each argument must be slice_nil, or implicitly convertable to object.
- // They should normally be integers.
- template<typename Integer1, typename Integer2>
- slice( Integer1 start, Integer2 stop)
- : base( object(start).ptr(), object(stop).ptr(), 0 )
- {}
-
- template<typename Integer1, typename Integer2, typename Integer3>
- slice( Integer1 start, Integer2 stop, Integer3 stride)
- : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
- {}
-
- // The following algorithm is intended to automate the process of
- // determining a slice range when you want to fully support negative
- // indices and non-singular step sizes. Its functionallity is simmilar to
- // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
- // This template returns a slice::range struct that, when used in the
- // following iterative loop, will traverse a slice of the function's
- // arguments.
- // while (start != end) {
- // do_foo(...);
- // std::advance( start, step);
- // }
- // do_foo(...); // repeat exactly once more.
-
- // Arguments: a [begin, end) pair of STL-conforming random-access iterators.
-
- // Return: slice::range, where start and stop define a _closed_ interval
- // that covers at most [begin, end-1] of the provided arguments, and a step
- // that is non-zero.
-
- // Throws: error_already_set() if any of the indices are neither None nor
- // integers, or the slice has a step value of zero.
- // std::invalid_argument if the resulting range would be empty. Normally,
- // you should catch this exception and return an empty sequence of the
- // appropriate type.
-
- // Performance: constant time for random-access iterators.
-
- // Rationale:
- // closed-interval: If an open interval were used, then for a non-singular
- // value for step, the required state for the end iterator could be
- // beyond the one-past-the-end postion of the specified range. While
- // probably harmless, the behavior of STL-conforming iterators is
- // undefined in this case.
- // exceptions on zero-length range: It is impossible to define a closed
- // interval over an empty range, so some other form of error checking
- // would have to be used by the user to prevent undefined behavior. In
- // the case where the user fails to catch the exception, it will simply
- // be translated to Python by the default exception handling mechanisms.
- template<typename RandomAccessIterator>
- struct range
- {
- RandomAccessIterator start;
- RandomAccessIterator stop;
- typename iterator_difference<RandomAccessIterator>::type step;
- };
-
- template<typename RandomAccessIterator>
- slice::range<RandomAccessIterator>
- get_indices( const RandomAccessIterator& begin,
- const RandomAccessIterator& end) const
- {
- // This is based loosely on PySlice_GetIndicesEx(), but it has been
- // carefully crafted to ensure that these iterators never fall out of
- // the range of the container.
- slice::range<RandomAccessIterator> ret;
-
- typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
- difference_type max_dist = std::distance(begin, end);
- object slice_start = this->start();
- object slice_stop = this->stop();
- object slice_step = this->step();
-
- // Extract the step.
- if (slice_step == object()) {
- ret.step = 1;
- }
- else {
- ret.step = extract<long>( slice_step);
- if (ret.step == 0) {
- PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
- throw_error_already_set();
- }
- }
-
- // Setup the start iterator.
- if (slice_start == object()) {
- if (ret.step < 0) {
- ret.start = end;
- --ret.start;
- }
- else
- ret.start = begin;
- }
- else {
- difference_type i = extract<long>( slice_start);
- if (i >= max_dist && ret.step > 0)
- throw std::invalid_argument( "Zero-length slice");
- if (i >= 0) {
- ret.start = begin;
- BOOST_USING_STD_MIN();
- std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
- }
- else {
- if (i < -max_dist && ret.step < 0)
- throw std::invalid_argument( "Zero-length slice");
- ret.start = end;
- // Advance start (towards begin) not farther than begin.
- std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
- }
- }
-
- // Set up the stop iterator. This one is a little trickier since slices
- // define a [) range, and we are returning a [] range.
- if (slice_stop == object()) {
- if (ret.step < 0) {
- ret.stop = begin;
- }
- else {
- ret.stop = end;
- std::advance( ret.stop, -1);
- }
- }
- else {
- difference_type i = extract<long>(slice_stop);
- // First, branch on which direction we are going with this.
- if (ret.step < 0) {
- if (i+1 >= max_dist || i == -1)
- throw std::invalid_argument( "Zero-length slice");
-
- if (i >= 0) {
- ret.stop = begin;
- std::advance( ret.stop, i+1);
- }
- else { // i is negative, but more negative than -1.
- ret.stop = end;
- std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
- }
- }
- else { // stepping forward
- if (i == 0 || -i >= max_dist)
- throw std::invalid_argument( "Zero-length slice");
-
- if (i > 0) {
- ret.stop = begin;
- std::advance( ret.stop, (std::min)( i-1, max_dist-1));
- }
- else { // i is negative, but not more negative than -max_dist
- ret.stop = end;
- std::advance( ret.stop, i-1);
- }
- }
- }
-
- // Now the fun part, handling the possibilites surrounding step.
- // At this point, step has been initialized, ret.stop, and ret.step
- // represent the widest possible range that could be traveled
- // (inclusive), and final_dist is the maximum distance covered by the
- // slice.
- typename iterator_difference<RandomAccessIterator>::type final_dist =
- std::distance( ret.start, ret.stop);
-
- // First case, if both ret.start and ret.stop are equal, then step
- // is irrelevant and we can return here.
- if (final_dist == 0)
- return ret;
-
- // Second, if there is a sign mismatch, than the resulting range and
- // step size conflict: std::advance( ret.start, ret.step) goes away from
- // ret.stop.
- if ((final_dist > 0) != (ret.step > 0))
- throw std::invalid_argument( "Zero-length slice.");
-
- // Finally, if the last step puts us past the end, we move ret.stop
- // towards ret.start in the amount of the remainder.
- // I don't remember all of the oolies surrounding negative modulii,
- // so I am handling each of these cases separately.
- if (final_dist < 0) {
- difference_type remainder = -final_dist % -ret.step;
- std::advance( ret.stop, remainder);
- }
- else {
- difference_type remainder = final_dist % ret.step;
- std::advance( ret.stop, -remainder);
- }
-
- return ret;
- }
- // Incorrect spelling. DO NOT USE. Only here for backward compatibility.
- // Corrected 2011-06-14.
- template<typename RandomAccessIterator>
- slice::range<RandomAccessIterator>
- get_indicies( const RandomAccessIterator& begin,
- const RandomAccessIterator& end) const
- {
- return get_indices(begin, end);
- }
-
- public:
- // This declaration, in conjunction with the specialization of
- // object_manager_traits<> below, allows C++ functions accepting slice
- // arguments to be called from from Python. These constructors should never
- // be used in client code.
- BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
- };
- namespace converter {
- template<>
- struct object_manager_traits<slice>
- : pytype_object_manager_traits<&PySlice_Type, slice>
- {
- };
-
- } // !namesapce converter
- } } // !namespace ::boost::python
- #endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP
|