123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- /// @ref gtx_integer
- namespace glm
- {
- // pow
- GLM_FUNC_QUALIFIER int pow(int x, uint y)
- {
- if(y == 0)
- return x >= 0 ? 1 : -1;
- int result = x;
- for(uint i = 1; i < y; ++i)
- result *= x;
- return result;
- }
- // sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387
- GLM_FUNC_QUALIFIER int sqrt(int x)
- {
- if(x <= 1) return x;
- int NextTrial = x >> 1;
- int CurrentAnswer;
- do
- {
- CurrentAnswer = NextTrial;
- NextTrial = (NextTrial + x / NextTrial) >> 1;
- } while(NextTrial < CurrentAnswer);
- return CurrentAnswer;
- }
- // Henry Gordon Dietz: http://aggregate.org/MAGIC/
- namespace detail
- {
- GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x)
- {
- /* 32-bit recursive reduction using SWAR...
- but first step is mapping 2-bit values
- into sum of 2 1-bit values in sneaky way
- */
- x -= ((x >> 1) & 0x55555555);
- x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
- x = (((x >> 4) + x) & 0x0f0f0f0f);
- x += (x >> 8);
- x += (x >> 16);
- return(x & 0x0000003f);
- }
- }//namespace detail
- // Henry Gordon Dietz: http://aggregate.org/MAGIC/
- /*
- GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x)
- {
- x |= (x >> 1);
- x |= (x >> 2);
- x |= (x >> 4);
- x |= (x >> 8);
- x |= (x >> 16);
- return _detail::ones32(x) >> 1;
- }
- */
- // mod
- GLM_FUNC_QUALIFIER int mod(int x, int y)
- {
- return ((x % y) + y) % y;
- }
- // factorial (!12 max, integer only)
- template<typename genType>
- GLM_FUNC_QUALIFIER genType factorial(genType const& x)
- {
- genType Temp = x;
- genType Result;
- for(Result = 1; Temp > 1; --Temp)
- Result *= Temp;
- return Result;
- }
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER vec<2, T, Q> factorial(
- vec<2, T, Q> const& x)
- {
- return vec<2, T, Q>(
- factorial(x.x),
- factorial(x.y));
- }
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER vec<3, T, Q> factorial(
- vec<3, T, Q> const& x)
- {
- return vec<3, T, Q>(
- factorial(x.x),
- factorial(x.y),
- factorial(x.z));
- }
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER vec<4, T, Q> factorial(
- vec<4, T, Q> const& x)
- {
- return vec<4, T, Q>(
- factorial(x.x),
- factorial(x.y),
- factorial(x.z),
- factorial(x.w));
- }
- GLM_FUNC_QUALIFIER uint pow(uint x, uint y)
- {
- if (y == 0)
- return 1u;
- uint result = x;
- for(uint i = 1; i < y; ++i)
- result *= x;
- return result;
- }
- GLM_FUNC_QUALIFIER uint sqrt(uint x)
- {
- if(x <= 1) return x;
- uint NextTrial = x >> 1;
- uint CurrentAnswer;
- do
- {
- CurrentAnswer = NextTrial;
- NextTrial = (NextTrial + x / NextTrial) >> 1;
- } while(NextTrial < CurrentAnswer);
- return CurrentAnswer;
- }
- GLM_FUNC_QUALIFIER uint mod(uint x, uint y)
- {
- return x - y * (x / y);
- }
- #if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))
- GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x)
- {
- return 31u - findMSB(x);
- }
- #else
- // Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt
- GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x)
- {
- int y, m, n;
- y = -int(x >> 16); // If left half of x is 0,
- m = (y >> 16) & 16; // set n = 16. If left half
- n = 16 - m; // is nonzero, set n = 0 and
- x = x >> m; // shift x right 16.
- // Now x is of the form 0000xxxx.
- y = x - 0x100; // If positions 8-15 are 0,
- m = (y >> 16) & 8; // add 8 to n and shift x left 8.
- n = n + m;
- x = x << m;
- y = x - 0x1000; // If positions 12-15 are 0,
- m = (y >> 16) & 4; // add 4 to n and shift x left 4.
- n = n + m;
- x = x << m;
- y = x - 0x4000; // If positions 14-15 are 0,
- m = (y >> 16) & 2; // add 2 to n and shift x left 2.
- n = n + m;
- x = x << m;
- y = x >> 14; // Set y = 0, 1, 2, or 3.
- m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
- return unsigned(n + 2 - m);
- }
- #endif//(GLM_COMPILER)
- }//namespace glm
|