matrix_factorisation.hpp 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. /// @ref gtx_matrix_factorisation
  2. /// @file glm/gtx/matrix_factorisation.hpp
  3. ///
  4. /// @see core (dependence)
  5. ///
  6. /// @defgroup gtx_matrix_factorisation GLM_GTX_matrix_factorisation
  7. /// @ingroup gtx
  8. ///
  9. /// Include <glm/gtx/matrix_factorisation.hpp> to use the features of this extension.
  10. ///
  11. /// Functions to factor matrices in various forms
  12. #pragma once
  13. // Dependency:
  14. #include "../glm.hpp"
  15. #if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
  16. # ifndef GLM_ENABLE_EXPERIMENTAL
  17. # pragma message("GLM: GLM_GTX_matrix_factorisation is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.")
  18. # else
  19. # pragma message("GLM: GLM_GTX_matrix_factorisation extension included")
  20. # endif
  21. #endif
  22. /*
  23. Suggestions:
  24. - Move helper functions flipud and fliplr to another file: They may be helpful in more general circumstances.
  25. - Implement other types of matrix factorisation, such as: QL and LQ, L(D)U, eigendecompositions, etc...
  26. */
  27. namespace glm
  28. {
  29. /// @addtogroup gtx_matrix_factorisation
  30. /// @{
  31. /// Flips the matrix rows up and down.
  32. ///
  33. /// From GLM_GTX_matrix_factorisation extension.
  34. template <length_t C, length_t R, typename T, qualifier Q>
  35. GLM_FUNC_DECL mat<C, R, T, Q> flipud(mat<C, R, T, Q> const& in);
  36. /// Flips the matrix columns right and left.
  37. ///
  38. /// From GLM_GTX_matrix_factorisation extension.
  39. template <length_t C, length_t R, typename T, qualifier Q>
  40. GLM_FUNC_DECL mat<C, R, T, Q> fliplr(mat<C, R, T, Q> const& in);
  41. /// Performs QR factorisation of a matrix.
  42. /// Returns 2 matrices, q and r, such that the columns of q are orthonormal and span the same subspace than those of the input matrix, r is an upper triangular matrix, and q*r=in.
  43. /// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).
  44. ///
  45. /// From GLM_GTX_matrix_factorisation extension.
  46. template <length_t C, length_t R, typename T, qualifier Q>
  47. GLM_FUNC_DECL void qr_decompose(mat<C, R, T, Q> const& in, mat<(C < R ? C : R), R, T, Q>& q, mat<C, (C < R ? C : R), T, Q>& r);
  48. /// Performs RQ factorisation of a matrix.
  49. /// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in.
  50. /// Note that in the context of RQ factorisation, the diagonal is seen as starting in the lower-right corner of the matrix, instead of the usual upper-left.
  51. /// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
  52. ///
  53. /// From GLM_GTX_matrix_factorisation extension.
  54. template <length_t C, length_t R, typename T, qualifier Q>
  55. GLM_FUNC_DECL void rq_decompose(mat<C, R, T, Q> const& in, mat<(C < R ? C : R), R, T, Q>& r, mat<C, (C < R ? C : R), T, Q>& q);
  56. /// @}
  57. }
  58. #include "matrix_factorisation.inl"