123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818 |
- /*
- ** $Id: lcode.c $
- ** Code generator for Lua
- ** See Copyright Notice in lua.h
- */
- #define lcode_c
- #define LUA_CORE
- #include "lprefix.h"
- #include <limits.h>
- #include <math.h>
- #include <stdlib.h>
- #include "lua.h"
- #include "lcode.h"
- #include "ldebug.h"
- #include "ldo.h"
- #include "lgc.h"
- #include "llex.h"
- #include "lmem.h"
- #include "lobject.h"
- #include "lopcodes.h"
- #include "lparser.h"
- #include "lstring.h"
- #include "ltable.h"
- #include "lvm.h"
- /* Maximum number of registers in a Lua function (must fit in 8 bits) */
- #define MAXREGS 255
- #define hasjumps(e) ((e)->t != (e)->f)
- static int codesJ (FuncState *fs, OpCode o, int sj, int k);
- /* semantic error */
- l_noret luaK_semerror (LexState *ls, const char *msg) {
- ls->t.token = 0; /* remove "near <token>" from final message */
- luaX_syntaxerror(ls, msg);
- }
- /*
- ** If expression is a numeric constant, fills 'v' with its value
- ** and returns 1. Otherwise, returns 0.
- */
- static int tonumeral (const expdesc *e, TValue *v) {
- if (hasjumps(e))
- return 0; /* not a numeral */
- switch (e->k) {
- case VKINT:
- if (v) setivalue(v, e->u.ival);
- return 1;
- case VKFLT:
- if (v) setfltvalue(v, e->u.nval);
- return 1;
- default: return 0;
- }
- }
- /*
- ** Get the constant value from a constant expression
- */
- static TValue *const2val (FuncState *fs, const expdesc *e) {
- lua_assert(e->k == VCONST);
- return &fs->ls->dyd->actvar.arr[e->u.info].k;
- }
- /*
- ** If expression is a constant, fills 'v' with its value
- ** and returns 1. Otherwise, returns 0.
- */
- int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
- if (hasjumps(e))
- return 0; /* not a constant */
- switch (e->k) {
- case VFALSE:
- setbfvalue(v);
- return 1;
- case VTRUE:
- setbtvalue(v);
- return 1;
- case VNIL:
- setnilvalue(v);
- return 1;
- case VKSTR: {
- setsvalue(fs->ls->L, v, e->u.strval);
- return 1;
- }
- case VCONST: {
- setobj(fs->ls->L, v, const2val(fs, e));
- return 1;
- }
- default: return tonumeral(e, v);
- }
- }
- /*
- ** Return the previous instruction of the current code. If there
- ** may be a jump target between the current instruction and the
- ** previous one, return an invalid instruction (to avoid wrong
- ** optimizations).
- */
- static Instruction *previousinstruction (FuncState *fs) {
- static const Instruction invalidinstruction = ~(Instruction)0;
- if (fs->pc > fs->lasttarget)
- return &fs->f->code[fs->pc - 1]; /* previous instruction */
- else
- return cast(Instruction*, &invalidinstruction);
- }
- /*
- ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
- ** instruction is also OP_LOADNIL and ranges are compatible, adjust
- ** range of previous instruction instead of emitting a new one. (For
- ** instance, 'local a; local b' will generate a single opcode.)
- */
- void luaK_nil (FuncState *fs, int from, int n) {
- int l = from + n - 1; /* last register to set nil */
- Instruction *previous = previousinstruction(fs);
- if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
- int pfrom = GETARG_A(*previous); /* get previous range */
- int pl = pfrom + GETARG_B(*previous);
- if ((pfrom <= from && from <= pl + 1) ||
- (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
- if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
- if (pl > l) l = pl; /* l = max(l, pl) */
- SETARG_A(*previous, from);
- SETARG_B(*previous, l - from);
- return;
- } /* else go through */
- }
- luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
- }
- /*
- ** Gets the destination address of a jump instruction. Used to traverse
- ** a list of jumps.
- */
- static int getjump (FuncState *fs, int pc) {
- int offset = GETARG_sJ(fs->f->code[pc]);
- if (offset == NO_JUMP) /* point to itself represents end of list */
- return NO_JUMP; /* end of list */
- else
- return (pc+1)+offset; /* turn offset into absolute position */
- }
- /*
- ** Fix jump instruction at position 'pc' to jump to 'dest'.
- ** (Jump addresses are relative in Lua)
- */
- static void fixjump (FuncState *fs, int pc, int dest) {
- Instruction *jmp = &fs->f->code[pc];
- int offset = dest - (pc + 1);
- lua_assert(dest != NO_JUMP);
- if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
- luaX_syntaxerror(fs->ls, "control structure too long");
- lua_assert(GET_OPCODE(*jmp) == OP_JMP);
- SETARG_sJ(*jmp, offset);
- }
- /*
- ** Concatenate jump-list 'l2' into jump-list 'l1'
- */
- void luaK_concat (FuncState *fs, int *l1, int l2) {
- if (l2 == NO_JUMP) return; /* nothing to concatenate? */
- else if (*l1 == NO_JUMP) /* no original list? */
- *l1 = l2; /* 'l1' points to 'l2' */
- else {
- int list = *l1;
- int next;
- while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
- list = next;
- fixjump(fs, list, l2); /* last element links to 'l2' */
- }
- }
- /*
- ** Create a jump instruction and return its position, so its destination
- ** can be fixed later (with 'fixjump').
- */
- int luaK_jump (FuncState *fs) {
- return codesJ(fs, OP_JMP, NO_JUMP, 0);
- }
- /*
- ** Code a 'return' instruction
- */
- void luaK_ret (FuncState *fs, int first, int nret) {
- OpCode op;
- switch (nret) {
- case 0: op = OP_RETURN0; break;
- case 1: op = OP_RETURN1; break;
- default: op = OP_RETURN; break;
- }
- luaK_codeABC(fs, op, first, nret + 1, 0);
- }
- /*
- ** Code a "conditional jump", that is, a test or comparison opcode
- ** followed by a jump. Return jump position.
- */
- static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
- luaK_codeABCk(fs, op, A, B, C, k);
- return luaK_jump(fs);
- }
- /*
- ** returns current 'pc' and marks it as a jump target (to avoid wrong
- ** optimizations with consecutive instructions not in the same basic block).
- */
- int luaK_getlabel (FuncState *fs) {
- fs->lasttarget = fs->pc;
- return fs->pc;
- }
- /*
- ** Returns the position of the instruction "controlling" a given
- ** jump (that is, its condition), or the jump itself if it is
- ** unconditional.
- */
- static Instruction *getjumpcontrol (FuncState *fs, int pc) {
- Instruction *pi = &fs->f->code[pc];
- if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
- return pi-1;
- else
- return pi;
- }
- /*
- ** Patch destination register for a TESTSET instruction.
- ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
- ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
- ** register. Otherwise, change instruction to a simple 'TEST' (produces
- ** no register value)
- */
- static int patchtestreg (FuncState *fs, int node, int reg) {
- Instruction *i = getjumpcontrol(fs, node);
- if (GET_OPCODE(*i) != OP_TESTSET)
- return 0; /* cannot patch other instructions */
- if (reg != NO_REG && reg != GETARG_B(*i))
- SETARG_A(*i, reg);
- else {
- /* no register to put value or register already has the value;
- change instruction to simple test */
- *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
- }
- return 1;
- }
- /*
- ** Traverse a list of tests ensuring no one produces a value
- */
- static void removevalues (FuncState *fs, int list) {
- for (; list != NO_JUMP; list = getjump(fs, list))
- patchtestreg(fs, list, NO_REG);
- }
- /*
- ** Traverse a list of tests, patching their destination address and
- ** registers: tests producing values jump to 'vtarget' (and put their
- ** values in 'reg'), other tests jump to 'dtarget'.
- */
- static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
- int dtarget) {
- while (list != NO_JUMP) {
- int next = getjump(fs, list);
- if (patchtestreg(fs, list, reg))
- fixjump(fs, list, vtarget);
- else
- fixjump(fs, list, dtarget); /* jump to default target */
- list = next;
- }
- }
- /*
- ** Path all jumps in 'list' to jump to 'target'.
- ** (The assert means that we cannot fix a jump to a forward address
- ** because we only know addresses once code is generated.)
- */
- void luaK_patchlist (FuncState *fs, int list, int target) {
- lua_assert(target <= fs->pc);
- patchlistaux(fs, list, target, NO_REG, target);
- }
- void luaK_patchtohere (FuncState *fs, int list) {
- int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
- luaK_patchlist(fs, list, hr);
- }
- /*
- ** MAXimum number of successive Instructions WiTHout ABSolute line
- ** information.
- */
- #if !defined(MAXIWTHABS)
- #define MAXIWTHABS 120
- #endif
- /* limit for difference between lines in relative line info. */
- #define LIMLINEDIFF 0x80
- /*
- ** Save line info for a new instruction. If difference from last line
- ** does not fit in a byte, of after that many instructions, save a new
- ** absolute line info; (in that case, the special value 'ABSLINEINFO'
- ** in 'lineinfo' signals the existence of this absolute information.)
- ** Otherwise, store the difference from last line in 'lineinfo'.
- */
- static void savelineinfo (FuncState *fs, Proto *f, int line) {
- int linedif = line - fs->previousline;
- int pc = fs->pc - 1; /* last instruction coded */
- if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ > MAXIWTHABS) {
- luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
- f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
- f->abslineinfo[fs->nabslineinfo].pc = pc;
- f->abslineinfo[fs->nabslineinfo++].line = line;
- linedif = ABSLINEINFO; /* signal that there is absolute information */
- fs->iwthabs = 0; /* restart counter */
- }
- luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
- MAX_INT, "opcodes");
- f->lineinfo[pc] = linedif;
- fs->previousline = line; /* last line saved */
- }
- /*
- ** Remove line information from the last instruction.
- ** If line information for that instruction is absolute, set 'iwthabs'
- ** above its max to force the new (replacing) instruction to have
- ** absolute line info, too.
- */
- static void removelastlineinfo (FuncState *fs) {
- Proto *f = fs->f;
- int pc = fs->pc - 1; /* last instruction coded */
- if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
- fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
- fs->iwthabs--; /* undo previous increment */
- }
- else { /* absolute line information */
- lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
- fs->nabslineinfo--; /* remove it */
- fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
- }
- }
- /*
- ** Remove the last instruction created, correcting line information
- ** accordingly.
- */
- static void removelastinstruction (FuncState *fs) {
- removelastlineinfo(fs);
- fs->pc--;
- }
- /*
- ** Emit instruction 'i', checking for array sizes and saving also its
- ** line information. Return 'i' position.
- */
- int luaK_code (FuncState *fs, Instruction i) {
- Proto *f = fs->f;
- /* put new instruction in code array */
- luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
- MAX_INT, "opcodes");
- f->code[fs->pc++] = i;
- savelineinfo(fs, f, fs->ls->lastline);
- return fs->pc - 1; /* index of new instruction */
- }
- /*
- ** Format and emit an 'iABC' instruction. (Assertions check consistency
- ** of parameters versus opcode.)
- */
- int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
- lua_assert(getOpMode(o) == iABC);
- lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
- c <= MAXARG_C && (k & ~1) == 0);
- return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
- }
- /*
- ** Format and emit an 'iABx' instruction.
- */
- int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
- lua_assert(getOpMode(o) == iABx);
- lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
- return luaK_code(fs, CREATE_ABx(o, a, bc));
- }
- /*
- ** Format and emit an 'iAsBx' instruction.
- */
- int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
- unsigned int b = bc + OFFSET_sBx;
- lua_assert(getOpMode(o) == iAsBx);
- lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
- return luaK_code(fs, CREATE_ABx(o, a, b));
- }
- /*
- ** Format and emit an 'isJ' instruction.
- */
- static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
- unsigned int j = sj + OFFSET_sJ;
- lua_assert(getOpMode(o) == isJ);
- lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
- return luaK_code(fs, CREATE_sJ(o, j, k));
- }
- /*
- ** Emit an "extra argument" instruction (format 'iAx')
- */
- static int codeextraarg (FuncState *fs, int a) {
- lua_assert(a <= MAXARG_Ax);
- return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
- }
- /*
- ** Emit a "load constant" instruction, using either 'OP_LOADK'
- ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
- ** instruction with "extra argument".
- */
- static int luaK_codek (FuncState *fs, int reg, int k) {
- if (k <= MAXARG_Bx)
- return luaK_codeABx(fs, OP_LOADK, reg, k);
- else {
- int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
- codeextraarg(fs, k);
- return p;
- }
- }
- /*
- ** Check register-stack level, keeping track of its maximum size
- ** in field 'maxstacksize'
- */
- void luaK_checkstack (FuncState *fs, int n) {
- int newstack = fs->freereg + n;
- if (newstack > fs->f->maxstacksize) {
- if (newstack >= MAXREGS)
- luaX_syntaxerror(fs->ls,
- "function or expression needs too many registers");
- fs->f->maxstacksize = cast_byte(newstack);
- }
- }
- /*
- ** Reserve 'n' registers in register stack
- */
- void luaK_reserveregs (FuncState *fs, int n) {
- luaK_checkstack(fs, n);
- fs->freereg += n;
- }
- /*
- ** Free register 'reg', if it is neither a constant index nor
- ** a local variable.
- )
- */
- static void freereg (FuncState *fs, int reg) {
- if (reg >= luaY_nvarstack(fs)) {
- fs->freereg--;
- lua_assert(reg == fs->freereg);
- }
- }
- /*
- ** Free two registers in proper order
- */
- static void freeregs (FuncState *fs, int r1, int r2) {
- if (r1 > r2) {
- freereg(fs, r1);
- freereg(fs, r2);
- }
- else {
- freereg(fs, r2);
- freereg(fs, r1);
- }
- }
- /*
- ** Free register used by expression 'e' (if any)
- */
- static void freeexp (FuncState *fs, expdesc *e) {
- if (e->k == VNONRELOC)
- freereg(fs, e->u.info);
- }
- /*
- ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
- ** order.
- */
- static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
- int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
- int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
- freeregs(fs, r1, r2);
- }
- /*
- ** Add constant 'v' to prototype's list of constants (field 'k').
- ** Use scanner's table to cache position of constants in constant list
- ** and try to reuse constants. Because some values should not be used
- ** as keys (nil cannot be a key, integer keys can collapse with float
- ** keys), the caller must provide a useful 'key' for indexing the cache.
- */
- static int addk (FuncState *fs, TValue *key, TValue *v) {
- lua_State *L = fs->ls->L;
- Proto *f = fs->f;
- TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */
- int k, oldsize;
- if (ttisinteger(idx)) { /* is there an index there? */
- k = cast_int(ivalue(idx));
- /* correct value? (warning: must distinguish floats from integers!) */
- if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
- luaV_rawequalobj(&f->k[k], v))
- return k; /* reuse index */
- }
- /* constant not found; create a new entry */
- oldsize = f->sizek;
- k = fs->nk;
- /* numerical value does not need GC barrier;
- table has no metatable, so it does not need to invalidate cache */
- setivalue(idx, k);
- luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
- while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
- setobj(L, &f->k[k], v);
- fs->nk++;
- luaC_barrier(L, f, v);
- return k;
- }
- /*
- ** Add a string to list of constants and return its index.
- */
- static int stringK (FuncState *fs, TString *s) {
- TValue o;
- setsvalue(fs->ls->L, &o, s);
- return addk(fs, &o, &o); /* use string itself as key */
- }
- /*
- ** Add an integer to list of constants and return its index.
- ** Integers use userdata as keys to avoid collision with floats with
- ** same value; conversion to 'void*' is used only for hashing, so there
- ** are no "precision" problems.
- */
- static int luaK_intK (FuncState *fs, lua_Integer n) {
- TValue k, o;
- setpvalue(&k, cast_voidp(cast_sizet(n)));
- setivalue(&o, n);
- return addk(fs, &k, &o);
- }
- /*
- ** Add a float to list of constants and return its index.
- */
- static int luaK_numberK (FuncState *fs, lua_Number r) {
- TValue o;
- setfltvalue(&o, r);
- return addk(fs, &o, &o); /* use number itself as key */
- }
- /*
- ** Add a false to list of constants and return its index.
- */
- static int boolF (FuncState *fs) {
- TValue o;
- setbfvalue(&o);
- return addk(fs, &o, &o); /* use boolean itself as key */
- }
- /*
- ** Add a true to list of constants and return its index.
- */
- static int boolT (FuncState *fs) {
- TValue o;
- setbtvalue(&o);
- return addk(fs, &o, &o); /* use boolean itself as key */
- }
- /*
- ** Add nil to list of constants and return its index.
- */
- static int nilK (FuncState *fs) {
- TValue k, v;
- setnilvalue(&v);
- /* cannot use nil as key; instead use table itself to represent nil */
- sethvalue(fs->ls->L, &k, fs->ls->h);
- return addk(fs, &k, &v);
- }
- /*
- ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
- ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
- ** overflows in the hidden addition inside 'int2sC'.
- */
- static int fitsC (lua_Integer i) {
- return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
- }
- /*
- ** Check whether 'i' can be stored in an 'sBx' operand.
- */
- static int fitsBx (lua_Integer i) {
- return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
- }
- void luaK_int (FuncState *fs, int reg, lua_Integer i) {
- if (fitsBx(i))
- luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
- else
- luaK_codek(fs, reg, luaK_intK(fs, i));
- }
- static void luaK_float (FuncState *fs, int reg, lua_Number f) {
- lua_Integer fi;
- if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
- luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
- else
- luaK_codek(fs, reg, luaK_numberK(fs, f));
- }
- /*
- ** Convert a constant in 'v' into an expression description 'e'
- */
- static void const2exp (TValue *v, expdesc *e) {
- switch (ttypetag(v)) {
- case LUA_VNUMINT:
- e->k = VKINT; e->u.ival = ivalue(v);
- break;
- case LUA_VNUMFLT:
- e->k = VKFLT; e->u.nval = fltvalue(v);
- break;
- case LUA_VFALSE:
- e->k = VFALSE;
- break;
- case LUA_VTRUE:
- e->k = VTRUE;
- break;
- case LUA_VNIL:
- e->k = VNIL;
- break;
- case LUA_VSHRSTR: case LUA_VLNGSTR:
- e->k = VKSTR; e->u.strval = tsvalue(v);
- break;
- default: lua_assert(0);
- }
- }
- /*
- ** Fix an expression to return the number of results 'nresults'.
- ** 'e' must be a multi-ret expression (function call or vararg).
- */
- void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
- Instruction *pc = &getinstruction(fs, e);
- if (e->k == VCALL) /* expression is an open function call? */
- SETARG_C(*pc, nresults + 1);
- else {
- lua_assert(e->k == VVARARG);
- SETARG_C(*pc, nresults + 1);
- SETARG_A(*pc, fs->freereg);
- luaK_reserveregs(fs, 1);
- }
- }
- /*
- ** Convert a VKSTR to a VK
- */
- static void str2K (FuncState *fs, expdesc *e) {
- lua_assert(e->k == VKSTR);
- e->u.info = stringK(fs, e->u.strval);
- e->k = VK;
- }
- /*
- ** Fix an expression to return one result.
- ** If expression is not a multi-ret expression (function call or
- ** vararg), it already returns one result, so nothing needs to be done.
- ** Function calls become VNONRELOC expressions (as its result comes
- ** fixed in the base register of the call), while vararg expressions
- ** become VRELOC (as OP_VARARG puts its results where it wants).
- ** (Calls are created returning one result, so that does not need
- ** to be fixed.)
- */
- void luaK_setoneret (FuncState *fs, expdesc *e) {
- if (e->k == VCALL) { /* expression is an open function call? */
- /* already returns 1 value */
- lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
- e->k = VNONRELOC; /* result has fixed position */
- e->u.info = GETARG_A(getinstruction(fs, e));
- }
- else if (e->k == VVARARG) {
- SETARG_C(getinstruction(fs, e), 2);
- e->k = VRELOC; /* can relocate its simple result */
- }
- }
- /*
- ** Ensure that expression 'e' is not a variable (nor a <const>).
- ** (Expression still may have jump lists.)
- */
- void luaK_dischargevars (FuncState *fs, expdesc *e) {
- switch (e->k) {
- case VCONST: {
- const2exp(const2val(fs, e), e);
- break;
- }
- case VLOCAL: { /* already in a register */
- e->u.info = e->u.var.sidx;
- e->k = VNONRELOC; /* becomes a non-relocatable value */
- break;
- }
- case VUPVAL: { /* move value to some (pending) register */
- e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
- e->k = VRELOC;
- break;
- }
- case VINDEXUP: {
- e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
- e->k = VRELOC;
- break;
- }
- case VINDEXI: {
- freereg(fs, e->u.ind.t);
- e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
- e->k = VRELOC;
- break;
- }
- case VINDEXSTR: {
- freereg(fs, e->u.ind.t);
- e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
- e->k = VRELOC;
- break;
- }
- case VINDEXED: {
- freeregs(fs, e->u.ind.t, e->u.ind.idx);
- e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
- e->k = VRELOC;
- break;
- }
- case VVARARG: case VCALL: {
- luaK_setoneret(fs, e);
- break;
- }
- default: break; /* there is one value available (somewhere) */
- }
- }
- /*
- ** Ensure expression value is in register 'reg', making 'e' a
- ** non-relocatable expression.
- ** (Expression still may have jump lists.)
- */
- static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
- luaK_dischargevars(fs, e);
- switch (e->k) {
- case VNIL: {
- luaK_nil(fs, reg, 1);
- break;
- }
- case VFALSE: {
- luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
- break;
- }
- case VTRUE: {
- luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
- break;
- }
- case VKSTR: {
- str2K(fs, e);
- } /* FALLTHROUGH */
- case VK: {
- luaK_codek(fs, reg, e->u.info);
- break;
- }
- case VKFLT: {
- luaK_float(fs, reg, e->u.nval);
- break;
- }
- case VKINT: {
- luaK_int(fs, reg, e->u.ival);
- break;
- }
- case VRELOC: {
- Instruction *pc = &getinstruction(fs, e);
- SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
- break;
- }
- case VNONRELOC: {
- if (reg != e->u.info)
- luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
- break;
- }
- default: {
- lua_assert(e->k == VJMP);
- return; /* nothing to do... */
- }
- }
- e->u.info = reg;
- e->k = VNONRELOC;
- }
- /*
- ** Ensure expression value is in a register, making 'e' a
- ** non-relocatable expression.
- ** (Expression still may have jump lists.)
- */
- static void discharge2anyreg (FuncState *fs, expdesc *e) {
- if (e->k != VNONRELOC) { /* no fixed register yet? */
- luaK_reserveregs(fs, 1); /* get a register */
- discharge2reg(fs, e, fs->freereg-1); /* put value there */
- }
- }
- static int code_loadbool (FuncState *fs, int A, OpCode op) {
- luaK_getlabel(fs); /* those instructions may be jump targets */
- return luaK_codeABC(fs, op, A, 0, 0);
- }
- /*
- ** check whether list has any jump that do not produce a value
- ** or produce an inverted value
- */
- static int need_value (FuncState *fs, int list) {
- for (; list != NO_JUMP; list = getjump(fs, list)) {
- Instruction i = *getjumpcontrol(fs, list);
- if (GET_OPCODE(i) != OP_TESTSET) return 1;
- }
- return 0; /* not found */
- }
- /*
- ** Ensures final expression result (which includes results from its
- ** jump lists) is in register 'reg'.
- ** If expression has jumps, need to patch these jumps either to
- ** its final position or to "load" instructions (for those tests
- ** that do not produce values).
- */
- static void exp2reg (FuncState *fs, expdesc *e, int reg) {
- discharge2reg(fs, e, reg);
- if (e->k == VJMP) /* expression itself is a test? */
- luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
- if (hasjumps(e)) {
- int final; /* position after whole expression */
- int p_f = NO_JUMP; /* position of an eventual LOAD false */
- int p_t = NO_JUMP; /* position of an eventual LOAD true */
- if (need_value(fs, e->t) || need_value(fs, e->f)) {
- int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
- p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
- p_t = code_loadbool(fs, reg, OP_LOADTRUE);
- /* jump around these booleans if 'e' is not a test */
- luaK_patchtohere(fs, fj);
- }
- final = luaK_getlabel(fs);
- patchlistaux(fs, e->f, final, reg, p_f);
- patchlistaux(fs, e->t, final, reg, p_t);
- }
- e->f = e->t = NO_JUMP;
- e->u.info = reg;
- e->k = VNONRELOC;
- }
- /*
- ** Ensures final expression result is in next available register.
- */
- void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
- luaK_dischargevars(fs, e);
- freeexp(fs, e);
- luaK_reserveregs(fs, 1);
- exp2reg(fs, e, fs->freereg - 1);
- }
- /*
- ** Ensures final expression result is in some (any) register
- ** and return that register.
- */
- int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
- luaK_dischargevars(fs, e);
- if (e->k == VNONRELOC) { /* expression already has a register? */
- if (!hasjumps(e)) /* no jumps? */
- return e->u.info; /* result is already in a register */
- if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
- exp2reg(fs, e, e->u.info); /* put final result in it */
- return e->u.info;
- }
- /* else expression has jumps and cannot change its register
- to hold the jump values, because it is a local variable.
- Go through to the default case. */
- }
- luaK_exp2nextreg(fs, e); /* default: use next available register */
- return e->u.info;
- }
- /*
- ** Ensures final expression result is either in a register
- ** or in an upvalue.
- */
- void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
- if (e->k != VUPVAL || hasjumps(e))
- luaK_exp2anyreg(fs, e);
- }
- /*
- ** Ensures final expression result is either in a register
- ** or it is a constant.
- */
- void luaK_exp2val (FuncState *fs, expdesc *e) {
- if (hasjumps(e))
- luaK_exp2anyreg(fs, e);
- else
- luaK_dischargevars(fs, e);
- }
- /*
- ** Try to make 'e' a K expression with an index in the range of R/K
- ** indices. Return true iff succeeded.
- */
- static int luaK_exp2K (FuncState *fs, expdesc *e) {
- if (!hasjumps(e)) {
- int info;
- switch (e->k) { /* move constants to 'k' */
- case VTRUE: info = boolT(fs); break;
- case VFALSE: info = boolF(fs); break;
- case VNIL: info = nilK(fs); break;
- case VKINT: info = luaK_intK(fs, e->u.ival); break;
- case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
- case VKSTR: info = stringK(fs, e->u.strval); break;
- case VK: info = e->u.info; break;
- default: return 0; /* not a constant */
- }
- if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
- e->k = VK; /* make expression a 'K' expression */
- e->u.info = info;
- return 1;
- }
- }
- /* else, expression doesn't fit; leave it unchanged */
- return 0;
- }
- /*
- ** Ensures final expression result is in a valid R/K index
- ** (that is, it is either in a register or in 'k' with an index
- ** in the range of R/K indices).
- ** Returns 1 iff expression is K.
- */
- int luaK_exp2RK (FuncState *fs, expdesc *e) {
- if (luaK_exp2K(fs, e))
- return 1;
- else { /* not a constant in the right range: put it in a register */
- luaK_exp2anyreg(fs, e);
- return 0;
- }
- }
- static void codeABRK (FuncState *fs, OpCode o, int a, int b,
- expdesc *ec) {
- int k = luaK_exp2RK(fs, ec);
- luaK_codeABCk(fs, o, a, b, ec->u.info, k);
- }
- /*
- ** Generate code to store result of expression 'ex' into variable 'var'.
- */
- void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
- switch (var->k) {
- case VLOCAL: {
- freeexp(fs, ex);
- exp2reg(fs, ex, var->u.var.sidx); /* compute 'ex' into proper place */
- return;
- }
- case VUPVAL: {
- int e = luaK_exp2anyreg(fs, ex);
- luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
- break;
- }
- case VINDEXUP: {
- codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
- break;
- }
- case VINDEXI: {
- codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
- break;
- }
- case VINDEXSTR: {
- codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
- break;
- }
- case VINDEXED: {
- codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
- break;
- }
- default: lua_assert(0); /* invalid var kind to store */
- }
- freeexp(fs, ex);
- }
- /*
- ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
- */
- void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
- int ereg;
- luaK_exp2anyreg(fs, e);
- ereg = e->u.info; /* register where 'e' was placed */
- freeexp(fs, e);
- e->u.info = fs->freereg; /* base register for op_self */
- e->k = VNONRELOC; /* self expression has a fixed register */
- luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
- codeABRK(fs, OP_SELF, e->u.info, ereg, key);
- freeexp(fs, key);
- }
- /*
- ** Negate condition 'e' (where 'e' is a comparison).
- */
- static void negatecondition (FuncState *fs, expdesc *e) {
- Instruction *pc = getjumpcontrol(fs, e->u.info);
- lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
- GET_OPCODE(*pc) != OP_TEST);
- SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
- }
- /*
- ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
- ** is true, code will jump if 'e' is true.) Return jump position.
- ** Optimize when 'e' is 'not' something, inverting the condition
- ** and removing the 'not'.
- */
- static int jumponcond (FuncState *fs, expdesc *e, int cond) {
- if (e->k == VRELOC) {
- Instruction ie = getinstruction(fs, e);
- if (GET_OPCODE(ie) == OP_NOT) {
- removelastinstruction(fs); /* remove previous OP_NOT */
- return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
- }
- /* else go through */
- }
- discharge2anyreg(fs, e);
- freeexp(fs, e);
- return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
- }
- /*
- ** Emit code to go through if 'e' is true, jump otherwise.
- */
- void luaK_goiftrue (FuncState *fs, expdesc *e) {
- int pc; /* pc of new jump */
- luaK_dischargevars(fs, e);
- switch (e->k) {
- case VJMP: { /* condition? */
- negatecondition(fs, e); /* jump when it is false */
- pc = e->u.info; /* save jump position */
- break;
- }
- case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
- pc = NO_JUMP; /* always true; do nothing */
- break;
- }
- default: {
- pc = jumponcond(fs, e, 0); /* jump when false */
- break;
- }
- }
- luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
- luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
- e->t = NO_JUMP;
- }
- /*
- ** Emit code to go through if 'e' is false, jump otherwise.
- */
- void luaK_goiffalse (FuncState *fs, expdesc *e) {
- int pc; /* pc of new jump */
- luaK_dischargevars(fs, e);
- switch (e->k) {
- case VJMP: {
- pc = e->u.info; /* already jump if true */
- break;
- }
- case VNIL: case VFALSE: {
- pc = NO_JUMP; /* always false; do nothing */
- break;
- }
- default: {
- pc = jumponcond(fs, e, 1); /* jump if true */
- break;
- }
- }
- luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
- luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
- e->f = NO_JUMP;
- }
- /*
- ** Code 'not e', doing constant folding.
- */
- static void codenot (FuncState *fs, expdesc *e) {
- switch (e->k) {
- case VNIL: case VFALSE: {
- e->k = VTRUE; /* true == not nil == not false */
- break;
- }
- case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
- e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
- break;
- }
- case VJMP: {
- negatecondition(fs, e);
- break;
- }
- case VRELOC:
- case VNONRELOC: {
- discharge2anyreg(fs, e);
- freeexp(fs, e);
- e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
- e->k = VRELOC;
- break;
- }
- default: lua_assert(0); /* cannot happen */
- }
- /* interchange true and false lists */
- { int temp = e->f; e->f = e->t; e->t = temp; }
- removevalues(fs, e->f); /* values are useless when negated */
- removevalues(fs, e->t);
- }
- /*
- ** Check whether expression 'e' is a small literal string
- */
- static int isKstr (FuncState *fs, expdesc *e) {
- return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
- ttisshrstring(&fs->f->k[e->u.info]));
- }
- /*
- ** Check whether expression 'e' is a literal integer.
- */
- int luaK_isKint (expdesc *e) {
- return (e->k == VKINT && !hasjumps(e));
- }
- /*
- ** Check whether expression 'e' is a literal integer in
- ** proper range to fit in register C
- */
- static int isCint (expdesc *e) {
- return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
- }
- /*
- ** Check whether expression 'e' is a literal integer in
- ** proper range to fit in register sC
- */
- static int isSCint (expdesc *e) {
- return luaK_isKint(e) && fitsC(e->u.ival);
- }
- /*
- ** Check whether expression 'e' is a literal integer or float in
- ** proper range to fit in a register (sB or sC).
- */
- static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
- lua_Integer i;
- if (e->k == VKINT)
- i = e->u.ival;
- else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
- *isfloat = 1;
- else
- return 0; /* not a number */
- if (!hasjumps(e) && fitsC(i)) {
- *pi = int2sC(cast_int(i));
- return 1;
- }
- else
- return 0;
- }
- /*
- ** Create expression 't[k]'. 't' must have its final result already in a
- ** register or upvalue. Upvalues can only be indexed by literal strings.
- ** Keys can be literal strings in the constant table or arbitrary
- ** values in registers.
- */
- void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
- if (k->k == VKSTR)
- str2K(fs, k);
- lua_assert(!hasjumps(t) &&
- (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
- if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
- luaK_exp2anyreg(fs, t); /* put it in a register */
- if (t->k == VUPVAL) {
- t->u.ind.t = t->u.info; /* upvalue index */
- t->u.ind.idx = k->u.info; /* literal string */
- t->k = VINDEXUP;
- }
- else {
- /* register index of the table */
- t->u.ind.t = (t->k == VLOCAL) ? t->u.var.sidx: t->u.info;
- if (isKstr(fs, k)) {
- t->u.ind.idx = k->u.info; /* literal string */
- t->k = VINDEXSTR;
- }
- else if (isCint(k)) {
- t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
- t->k = VINDEXI;
- }
- else {
- t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
- t->k = VINDEXED;
- }
- }
- }
- /*
- ** Return false if folding can raise an error.
- ** Bitwise operations need operands convertible to integers; division
- ** operations cannot have 0 as divisor.
- */
- static int validop (int op, TValue *v1, TValue *v2) {
- switch (op) {
- case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
- case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
- lua_Integer i;
- return (tointegerns(v1, &i) && tointegerns(v2, &i));
- }
- case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
- return (nvalue(v2) != 0);
- default: return 1; /* everything else is valid */
- }
- }
- /*
- ** Try to "constant-fold" an operation; return 1 iff successful.
- ** (In this case, 'e1' has the final result.)
- */
- static int constfolding (FuncState *fs, int op, expdesc *e1,
- const expdesc *e2) {
- TValue v1, v2, res;
- if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
- return 0; /* non-numeric operands or not safe to fold */
- luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
- if (ttisinteger(&res)) {
- e1->k = VKINT;
- e1->u.ival = ivalue(&res);
- }
- else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
- lua_Number n = fltvalue(&res);
- if (luai_numisnan(n) || n == 0)
- return 0;
- e1->k = VKFLT;
- e1->u.nval = n;
- }
- return 1;
- }
- /*
- ** Emit code for unary expressions that "produce values"
- ** (everything but 'not').
- ** Expression to produce final result will be encoded in 'e'.
- */
- static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
- int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
- freeexp(fs, e);
- e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
- e->k = VRELOC; /* all those operations are relocatable */
- luaK_fixline(fs, line);
- }
- /*
- ** Emit code for binary expressions that "produce values"
- ** (everything but logical operators 'and'/'or' and comparison
- ** operators).
- ** Expression to produce final result will be encoded in 'e1'.
- */
- static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
- OpCode op, int v2, int flip, int line,
- OpCode mmop, TMS event) {
- int v1 = luaK_exp2anyreg(fs, e1);
- int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
- freeexps(fs, e1, e2);
- e1->u.info = pc;
- e1->k = VRELOC; /* all those operations are relocatable */
- luaK_fixline(fs, line);
- luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
- luaK_fixline(fs, line);
- }
- /*
- ** Emit code for binary expressions that "produce values" over
- ** two registers.
- */
- static void codebinexpval (FuncState *fs, OpCode op,
- expdesc *e1, expdesc *e2, int line) {
- int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */
- lua_assert(OP_ADD <= op && op <= OP_SHR);
- finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
- cast(TMS, (op - OP_ADD) + TM_ADD));
- }
- /*
- ** Code binary operators with immediate operands.
- */
- static void codebini (FuncState *fs, OpCode op,
- expdesc *e1, expdesc *e2, int flip, int line,
- TMS event) {
- int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
- lua_assert(e2->k == VKINT);
- finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
- }
- /* Try to code a binary operator negating its second operand.
- ** For the metamethod, 2nd operand must keep its original value.
- */
- static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
- OpCode op, int line, TMS event) {
- if (!luaK_isKint(e2))
- return 0; /* not an integer constant */
- else {
- lua_Integer i2 = e2->u.ival;
- if (!(fitsC(i2) && fitsC(-i2)))
- return 0; /* not in the proper range */
- else { /* operating a small integer constant */
- int v2 = cast_int(i2);
- finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
- /* correct metamethod argument */
- SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
- return 1; /* successfully coded */
- }
- }
- }
- static void swapexps (expdesc *e1, expdesc *e2) {
- expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
- }
- /*
- ** Code arithmetic operators ('+', '-', ...). If second operand is a
- ** constant in the proper range, use variant opcodes with K operands.
- */
- static void codearith (FuncState *fs, BinOpr opr,
- expdesc *e1, expdesc *e2, int flip, int line) {
- TMS event = cast(TMS, opr + TM_ADD);
- if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */
- int v2 = e2->u.info; /* K index */
- OpCode op = cast(OpCode, opr + OP_ADDK);
- finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
- }
- else { /* 'e2' is neither an immediate nor a K operand */
- OpCode op = cast(OpCode, opr + OP_ADD);
- if (flip)
- swapexps(e1, e2); /* back to original order */
- codebinexpval(fs, op, e1, e2, line); /* use standard operators */
- }
- }
- /*
- ** Code commutative operators ('+', '*'). If first operand is a
- ** numeric constant, change order of operands to try to use an
- ** immediate or K operator.
- */
- static void codecommutative (FuncState *fs, BinOpr op,
- expdesc *e1, expdesc *e2, int line) {
- int flip = 0;
- if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
- swapexps(e1, e2); /* change order */
- flip = 1;
- }
- if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
- codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
- else
- codearith(fs, op, e1, e2, flip, line);
- }
- /*
- ** Code bitwise operations; they are all associative, so the function
- ** tries to put an integer constant as the 2nd operand (a K operand).
- */
- static void codebitwise (FuncState *fs, BinOpr opr,
- expdesc *e1, expdesc *e2, int line) {
- int flip = 0;
- int v2;
- OpCode op;
- if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
- swapexps(e1, e2); /* 'e2' will be the constant operand */
- flip = 1;
- }
- else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */
- op = cast(OpCode, opr + OP_ADD);
- codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */
- return;
- }
- v2 = e2->u.info; /* index in K array */
- op = cast(OpCode, opr + OP_ADDK);
- lua_assert(ttisinteger(&fs->f->k[v2]));
- finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
- cast(TMS, opr + TM_ADD));
- }
- /*
- ** Emit code for order comparisons. When using an immediate operand,
- ** 'isfloat' tells whether the original value was a float.
- */
- static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
- int r1, r2;
- int im;
- int isfloat = 0;
- if (isSCnumber(e2, &im, &isfloat)) {
- /* use immediate operand */
- r1 = luaK_exp2anyreg(fs, e1);
- r2 = im;
- op = cast(OpCode, (op - OP_LT) + OP_LTI);
- }
- else if (isSCnumber(e1, &im, &isfloat)) {
- /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
- r1 = luaK_exp2anyreg(fs, e2);
- r2 = im;
- op = (op == OP_LT) ? OP_GTI : OP_GEI;
- }
- else { /* regular case, compare two registers */
- r1 = luaK_exp2anyreg(fs, e1);
- r2 = luaK_exp2anyreg(fs, e2);
- }
- freeexps(fs, e1, e2);
- e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
- e1->k = VJMP;
- }
- /*
- ** Emit code for equality comparisons ('==', '~=').
- ** 'e1' was already put as RK by 'luaK_infix'.
- */
- static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
- int r1, r2;
- int im;
- int isfloat = 0; /* not needed here, but kept for symmetry */
- OpCode op;
- if (e1->k != VNONRELOC) {
- lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
- swapexps(e1, e2);
- }
- r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
- if (isSCnumber(e2, &im, &isfloat)) {
- op = OP_EQI;
- r2 = im; /* immediate operand */
- }
- else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */
- op = OP_EQK;
- r2 = e2->u.info; /* constant index */
- }
- else {
- op = OP_EQ; /* will compare two registers */
- r2 = luaK_exp2anyreg(fs, e2);
- }
- freeexps(fs, e1, e2);
- e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
- e1->k = VJMP;
- }
- /*
- ** Apply prefix operation 'op' to expression 'e'.
- */
- void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
- static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
- luaK_dischargevars(fs, e);
- switch (op) {
- case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
- if (constfolding(fs, op + LUA_OPUNM, e, &ef))
- break;
- /* else */ /* FALLTHROUGH */
- case OPR_LEN:
- codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
- break;
- case OPR_NOT: codenot(fs, e); break;
- default: lua_assert(0);
- }
- }
- /*
- ** Process 1st operand 'v' of binary operation 'op' before reading
- ** 2nd operand.
- */
- void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
- luaK_dischargevars(fs, v);
- switch (op) {
- case OPR_AND: {
- luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
- break;
- }
- case OPR_OR: {
- luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
- break;
- }
- case OPR_CONCAT: {
- luaK_exp2nextreg(fs, v); /* operand must be on the stack */
- break;
- }
- case OPR_ADD: case OPR_SUB:
- case OPR_MUL: case OPR_DIV: case OPR_IDIV:
- case OPR_MOD: case OPR_POW:
- case OPR_BAND: case OPR_BOR: case OPR_BXOR:
- case OPR_SHL: case OPR_SHR: {
- if (!tonumeral(v, NULL))
- luaK_exp2anyreg(fs, v);
- /* else keep numeral, which may be folded with 2nd operand */
- break;
- }
- case OPR_EQ: case OPR_NE: {
- if (!tonumeral(v, NULL))
- luaK_exp2RK(fs, v);
- /* else keep numeral, which may be an immediate operand */
- break;
- }
- case OPR_LT: case OPR_LE:
- case OPR_GT: case OPR_GE: {
- int dummy, dummy2;
- if (!isSCnumber(v, &dummy, &dummy2))
- luaK_exp2anyreg(fs, v);
- /* else keep numeral, which may be an immediate operand */
- break;
- }
- default: lua_assert(0);
- }
- }
- /*
- ** Create code for '(e1 .. e2)'.
- ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
- ** because concatenation is right associative), merge both CONCATs.
- */
- static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
- Instruction *ie2 = previousinstruction(fs);
- if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
- int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
- lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
- freeexp(fs, e2);
- SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
- SETARG_B(*ie2, n + 1); /* will concatenate one more element */
- }
- else { /* 'e2' is not a concatenation */
- luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
- freeexp(fs, e2);
- luaK_fixline(fs, line);
- }
- }
- /*
- ** Finalize code for binary operation, after reading 2nd operand.
- */
- void luaK_posfix (FuncState *fs, BinOpr opr,
- expdesc *e1, expdesc *e2, int line) {
- luaK_dischargevars(fs, e2);
- if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
- return; /* done by folding */
- switch (opr) {
- case OPR_AND: {
- lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
- luaK_concat(fs, &e2->f, e1->f);
- *e1 = *e2;
- break;
- }
- case OPR_OR: {
- lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
- luaK_concat(fs, &e2->t, e1->t);
- *e1 = *e2;
- break;
- }
- case OPR_CONCAT: { /* e1 .. e2 */
- luaK_exp2nextreg(fs, e2);
- codeconcat(fs, e1, e2, line);
- break;
- }
- case OPR_ADD: case OPR_MUL: {
- codecommutative(fs, opr, e1, e2, line);
- break;
- }
- case OPR_SUB: {
- if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
- break; /* coded as (r1 + -I) */
- /* ELSE */
- } /* FALLTHROUGH */
- case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
- codearith(fs, opr, e1, e2, 0, line);
- break;
- }
- case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
- codebitwise(fs, opr, e1, e2, line);
- break;
- }
- case OPR_SHL: {
- if (isSCint(e1)) {
- swapexps(e1, e2);
- codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
- }
- else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
- /* coded as (r1 >> -I) */;
- }
- else /* regular case (two registers) */
- codebinexpval(fs, OP_SHL, e1, e2, line);
- break;
- }
- case OPR_SHR: {
- if (isSCint(e2))
- codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
- else /* regular case (two registers) */
- codebinexpval(fs, OP_SHR, e1, e2, line);
- break;
- }
- case OPR_EQ: case OPR_NE: {
- codeeq(fs, opr, e1, e2);
- break;
- }
- case OPR_LT: case OPR_LE: {
- OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
- codeorder(fs, op, e1, e2);
- break;
- }
- case OPR_GT: case OPR_GE: {
- /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
- OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
- swapexps(e1, e2);
- codeorder(fs, op, e1, e2);
- break;
- }
- default: lua_assert(0);
- }
- }
- /*
- ** Change line information associated with current position, by removing
- ** previous info and adding it again with new line.
- */
- void luaK_fixline (FuncState *fs, int line) {
- removelastlineinfo(fs);
- savelineinfo(fs, fs->f, line);
- }
- void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
- Instruction *inst = &fs->f->code[pc];
- int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
- int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
- int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
- int k = (extra > 0); /* true iff needs extra argument */
- *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
- *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
- }
- /*
- ** Emit a SETLIST instruction.
- ** 'base' is register that keeps table;
- ** 'nelems' is #table plus those to be stored now;
- ** 'tostore' is number of values (in registers 'base + 1',...) to add to
- ** table (or LUA_MULTRET to add up to stack top).
- */
- void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
- lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
- if (tostore == LUA_MULTRET)
- tostore = 0;
- if (nelems <= MAXARG_C)
- luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
- else {
- int extra = nelems / (MAXARG_C + 1);
- nelems %= (MAXARG_C + 1);
- luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
- codeextraarg(fs, extra);
- }
- fs->freereg = base + 1; /* free registers with list values */
- }
- /*
- ** return the final target of a jump (skipping jumps to jumps)
- */
- static int finaltarget (Instruction *code, int i) {
- int count;
- for (count = 0; count < 100; count++) { /* avoid infinite loops */
- Instruction pc = code[i];
- if (GET_OPCODE(pc) != OP_JMP)
- break;
- else
- i += GETARG_sJ(pc) + 1;
- }
- return i;
- }
- /*
- ** Do a final pass over the code of a function, doing small peephole
- ** optimizations and adjustments.
- */
- void luaK_finish (FuncState *fs) {
- int i;
- Proto *p = fs->f;
- for (i = 0; i < fs->pc; i++) {
- Instruction *pc = &p->code[i];
- lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
- switch (GET_OPCODE(*pc)) {
- case OP_RETURN0: case OP_RETURN1: {
- if (!(fs->needclose || p->is_vararg))
- break; /* no extra work */
- /* else use OP_RETURN to do the extra work */
- SET_OPCODE(*pc, OP_RETURN);
- } /* FALLTHROUGH */
- case OP_RETURN: case OP_TAILCALL: {
- if (fs->needclose)
- SETARG_k(*pc, 1); /* signal that it needs to close */
- if (p->is_vararg)
- SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
- break;
- }
- case OP_JMP: {
- int target = finaltarget(p->code, i);
- fixjump(fs, i, target);
- break;
- }
- default: break;
- }
- }
- }
|