12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- #include "scalar_constants.hpp"
- namespace glm
- {
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER qua<T, Q> exp(qua<T, Q> const& q)
- {
- vec<3, T, Q> u(q.x, q.y, q.z);
- T const Angle = glm::length(u);
- if (Angle < epsilon<T>())
- return qua<T, Q>();
- vec<3, T, Q> const v(u / Angle);
- return qua<T, Q>(cos(Angle), sin(Angle) * v);
- }
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER qua<T, Q> log(qua<T, Q> const& q)
- {
- vec<3, T, Q> u(q.x, q.y, q.z);
- T Vec3Len = length(u);
- if (Vec3Len < epsilon<T>())
- {
- if(q.w > static_cast<T>(0))
- return qua<T, Q>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
- else if(q.w < static_cast<T>(0))
- return qua<T, Q>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
- else
- return qua<T, Q>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
- }
- else
- {
- T t = atan(Vec3Len, T(q.w)) / Vec3Len;
- T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w;
- return qua<T, Q>(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z);
- }
- }
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER qua<T, Q> pow(qua<T, Q> const& x, T y)
- {
- //Raising to the power of 0 should yield 1
- //Needed to prevent a division by 0 error later on
- if(y > -epsilon<T>() && y < epsilon<T>())
- return qua<T, Q>(1,0,0,0);
- //To deal with non-unit quaternions
- T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
- T Angle;
- if(abs(x.w / magnitude) > cos_one_over_two<T>())
- {
- //Scalar component is close to 1; using it to recover angle would lose precision
- //Instead, we use the non-scalar components since sin() is accurate around 0
- //Prevent a division by 0 error later on
- T VectorMagnitude = x.x * x.x + x.y * x.y + x.z * x.z;
- if (glm::abs(VectorMagnitude - static_cast<T>(0)) < glm::epsilon<T>()) {
- //Equivalent to raising a real number to a power
- return qua<T, Q>(pow(x.w, y), 0, 0, 0);
- }
- Angle = asin(sqrt(VectorMagnitude) / magnitude);
- }
- else
- {
- //Scalar component is small, shouldn't cause loss of precision
- Angle = acos(x.w / magnitude);
- }
- T NewAngle = Angle * y;
- T Div = sin(NewAngle) / sin(Angle);
- T Mag = pow(magnitude, y - static_cast<T>(1));
- return qua<T, Q>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
- }
- template<typename T, qualifier Q>
- GLM_FUNC_QUALIFIER qua<T, Q> sqrt(qua<T, Q> const& x)
- {
- return pow(x, static_cast<T>(0.5));
- }
- }//namespace glm
|