123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387 |
- //
- // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
- //
- // This software is provided 'as-is', without any express or implied
- // warranty. In no event will the authors be held liable for any damages
- // arising from the use of this software.
- // Permission is granted to anyone to use this software for any purpose,
- // including commercial applications, and to alter it and redistribute it
- // freely, subject to the following restrictions:
- // 1. The origin of this software must not be misrepresented; you must not
- // claim that you wrote the original software. If you use this software
- // in a product, an acknowledgment in the product documentation would be
- // appreciated but is not required.
- // 2. Altered source versions must be plainly marked as such, and must not be
- // misrepresented as being the original software.
- // 3. This notice may not be removed or altered from any source distribution.
- //
- #include "DetourCommon.h"
- #include "DetourMath.h"
- //////////////////////////////////////////////////////////////////////////////////////////
- void dtClosestPtPointTriangle(float* closest, const float* p,
- const float* a, const float* b, const float* c)
- {
- // Check if P in vertex region outside A
- float ab[3], ac[3], ap[3];
- dtVsub(ab, b, a);
- dtVsub(ac, c, a);
- dtVsub(ap, p, a);
- float d1 = dtVdot(ab, ap);
- float d2 = dtVdot(ac, ap);
- if (d1 <= 0.0f && d2 <= 0.0f)
- {
- // barycentric coordinates (1,0,0)
- dtVcopy(closest, a);
- return;
- }
-
- // Check if P in vertex region outside B
- float bp[3];
- dtVsub(bp, p, b);
- float d3 = dtVdot(ab, bp);
- float d4 = dtVdot(ac, bp);
- if (d3 >= 0.0f && d4 <= d3)
- {
- // barycentric coordinates (0,1,0)
- dtVcopy(closest, b);
- return;
- }
-
- // Check if P in edge region of AB, if so return projection of P onto AB
- float vc = d1*d4 - d3*d2;
- if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f)
- {
- // barycentric coordinates (1-v,v,0)
- float v = d1 / (d1 - d3);
- closest[0] = a[0] + v * ab[0];
- closest[1] = a[1] + v * ab[1];
- closest[2] = a[2] + v * ab[2];
- return;
- }
-
- // Check if P in vertex region outside C
- float cp[3];
- dtVsub(cp, p, c);
- float d5 = dtVdot(ab, cp);
- float d6 = dtVdot(ac, cp);
- if (d6 >= 0.0f && d5 <= d6)
- {
- // barycentric coordinates (0,0,1)
- dtVcopy(closest, c);
- return;
- }
-
- // Check if P in edge region of AC, if so return projection of P onto AC
- float vb = d5*d2 - d1*d6;
- if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f)
- {
- // barycentric coordinates (1-w,0,w)
- float w = d2 / (d2 - d6);
- closest[0] = a[0] + w * ac[0];
- closest[1] = a[1] + w * ac[1];
- closest[2] = a[2] + w * ac[2];
- return;
- }
-
- // Check if P in edge region of BC, if so return projection of P onto BC
- float va = d3*d6 - d5*d4;
- if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f)
- {
- // barycentric coordinates (0,1-w,w)
- float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
- closest[0] = b[0] + w * (c[0] - b[0]);
- closest[1] = b[1] + w * (c[1] - b[1]);
- closest[2] = b[2] + w * (c[2] - b[2]);
- return;
- }
-
- // P inside face region. Compute Q through its barycentric coordinates (u,v,w)
- float denom = 1.0f / (va + vb + vc);
- float v = vb * denom;
- float w = vc * denom;
- closest[0] = a[0] + ab[0] * v + ac[0] * w;
- closest[1] = a[1] + ab[1] * v + ac[1] * w;
- closest[2] = a[2] + ab[2] * v + ac[2] * w;
- }
- bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
- const float* verts, int nverts,
- float& tmin, float& tmax,
- int& segMin, int& segMax)
- {
- static const float EPS = 0.00000001f;
-
- tmin = 0;
- tmax = 1;
- segMin = -1;
- segMax = -1;
-
- float dir[3];
- dtVsub(dir, p1, p0);
-
- for (int i = 0, j = nverts-1; i < nverts; j=i++)
- {
- float edge[3], diff[3];
- dtVsub(edge, &verts[i*3], &verts[j*3]);
- dtVsub(diff, p0, &verts[j*3]);
- const float n = dtVperp2D(edge, diff);
- const float d = dtVperp2D(dir, edge);
- if (fabsf(d) < EPS)
- {
- // S is nearly parallel to this edge
- if (n < 0)
- return false;
- else
- continue;
- }
- const float t = n / d;
- if (d < 0)
- {
- // segment S is entering across this edge
- if (t > tmin)
- {
- tmin = t;
- segMin = j;
- // S enters after leaving polygon
- if (tmin > tmax)
- return false;
- }
- }
- else
- {
- // segment S is leaving across this edge
- if (t < tmax)
- {
- tmax = t;
- segMax = j;
- // S leaves before entering polygon
- if (tmax < tmin)
- return false;
- }
- }
- }
-
- return true;
- }
- float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t)
- {
- float pqx = q[0] - p[0];
- float pqz = q[2] - p[2];
- float dx = pt[0] - p[0];
- float dz = pt[2] - p[2];
- float d = pqx*pqx + pqz*pqz;
- t = pqx*dx + pqz*dz;
- if (d > 0) t /= d;
- if (t < 0) t = 0;
- else if (t > 1) t = 1;
- dx = p[0] + t*pqx - pt[0];
- dz = p[2] + t*pqz - pt[2];
- return dx*dx + dz*dz;
- }
- void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts)
- {
- tc[0] = 0.0f;
- tc[1] = 0.0f;
- tc[2] = 0.0f;
- for (int j = 0; j < nidx; ++j)
- {
- const float* v = &verts[idx[j]*3];
- tc[0] += v[0];
- tc[1] += v[1];
- tc[2] += v[2];
- }
- const float s = 1.0f / nidx;
- tc[0] *= s;
- tc[1] *= s;
- tc[2] *= s;
- }
- bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h)
- {
- const float EPS = 1e-6f;
- float v0[3], v1[3], v2[3];
- dtVsub(v0, c, a);
- dtVsub(v1, b, a);
- dtVsub(v2, p, a);
- // Compute scaled barycentric coordinates
- float denom = v0[0] * v1[2] - v0[2] * v1[0];
- if (fabsf(denom) < EPS)
- return false;
- float u = v1[2] * v2[0] - v1[0] * v2[2];
- float v = v0[0] * v2[2] - v0[2] * v2[0];
- if (denom < 0) {
- denom = -denom;
- u = -u;
- v = -v;
- }
- // If point lies inside the triangle, return interpolated ycoord.
- if (u >= 0.0f && v >= 0.0f && (u + v) <= denom) {
- h = a[1] + (v0[1] * u + v1[1] * v) / denom;
- return true;
- }
- return false;
- }
- /// @par
- ///
- /// All points are projected onto the xz-plane, so the y-values are ignored.
- bool dtPointInPolygon(const float* pt, const float* verts, const int nverts)
- {
- // TODO: Replace pnpoly with triArea2D tests?
- int i, j;
- bool c = false;
- for (i = 0, j = nverts-1; i < nverts; j = i++)
- {
- const float* vi = &verts[i*3];
- const float* vj = &verts[j*3];
- if (((vi[2] > pt[2]) != (vj[2] > pt[2])) &&
- (pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
- c = !c;
- }
- return c;
- }
- bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
- float* ed, float* et)
- {
- // TODO: Replace pnpoly with triArea2D tests?
- int i, j;
- bool c = false;
- for (i = 0, j = nverts-1; i < nverts; j = i++)
- {
- const float* vi = &verts[i*3];
- const float* vj = &verts[j*3];
- if (((vi[2] > pt[2]) != (vj[2] > pt[2])) &&
- (pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
- c = !c;
- ed[j] = dtDistancePtSegSqr2D(pt, vj, vi, et[j]);
- }
- return c;
- }
- static void projectPoly(const float* axis, const float* poly, const int npoly,
- float& rmin, float& rmax)
- {
- rmin = rmax = dtVdot2D(axis, &poly[0]);
- for (int i = 1; i < npoly; ++i)
- {
- const float d = dtVdot2D(axis, &poly[i*3]);
- rmin = dtMin(rmin, d);
- rmax = dtMax(rmax, d);
- }
- }
- inline bool overlapRange(const float amin, const float amax,
- const float bmin, const float bmax,
- const float eps)
- {
- return ((amin+eps) > bmax || (amax-eps) < bmin) ? false : true;
- }
- /// @par
- ///
- /// All vertices are projected onto the xz-plane, so the y-values are ignored.
- bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
- const float* polyb, const int npolyb)
- {
- const float eps = 1e-4f;
-
- for (int i = 0, j = npolya-1; i < npolya; j=i++)
- {
- const float* va = &polya[j*3];
- const float* vb = &polya[i*3];
- const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) };
- float amin,amax,bmin,bmax;
- projectPoly(n, polya, npolya, amin,amax);
- projectPoly(n, polyb, npolyb, bmin,bmax);
- if (!overlapRange(amin,amax, bmin,bmax, eps))
- {
- // Found separating axis
- return false;
- }
- }
- for (int i = 0, j = npolyb-1; i < npolyb; j=i++)
- {
- const float* va = &polyb[j*3];
- const float* vb = &polyb[i*3];
- const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) };
- float amin,amax,bmin,bmax;
- projectPoly(n, polya, npolya, amin,amax);
- projectPoly(n, polyb, npolyb, bmin,bmax);
- if (!overlapRange(amin,amax, bmin,bmax, eps))
- {
- // Found separating axis
- return false;
- }
- }
- return true;
- }
- // Returns a random point in a convex polygon.
- // Adapted from Graphics Gems article.
- void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
- const float s, const float t, float* out)
- {
- // Calc triangle araes
- float areasum = 0.0f;
- for (int i = 2; i < npts; i++) {
- areas[i] = dtTriArea2D(&pts[0], &pts[(i-1)*3], &pts[i*3]);
- areasum += dtMax(0.001f, areas[i]);
- }
- // Find sub triangle weighted by area.
- const float thr = s*areasum;
- float acc = 0.0f;
- float u = 1.0f;
- int tri = npts - 1;
- for (int i = 2; i < npts; i++) {
- const float dacc = areas[i];
- if (thr >= acc && thr < (acc+dacc))
- {
- u = (thr - acc) / dacc;
- tri = i;
- break;
- }
- acc += dacc;
- }
-
- float v = dtMathSqrtf(t);
-
- const float a = 1 - v;
- const float b = (1 - u) * v;
- const float c = u * v;
- const float* pa = &pts[0];
- const float* pb = &pts[(tri-1)*3];
- const float* pc = &pts[tri*3];
-
- out[0] = a*pa[0] + b*pb[0] + c*pc[0];
- out[1] = a*pa[1] + b*pb[1] + c*pc[1];
- out[2] = a*pa[2] + b*pb[2] + c*pc[2];
- }
- inline float vperpXZ(const float* a, const float* b) { return a[0]*b[2] - a[2]*b[0]; }
- bool dtIntersectSegSeg2D(const float* ap, const float* aq,
- const float* bp, const float* bq,
- float& s, float& t)
- {
- float u[3], v[3], w[3];
- dtVsub(u,aq,ap);
- dtVsub(v,bq,bp);
- dtVsub(w,ap,bp);
- float d = vperpXZ(u,v);
- if (fabsf(d) < 1e-6f) return false;
- s = vperpXZ(v,w) / d;
- t = vperpXZ(u,w) / d;
- return true;
- }
|