ellint_introduction.qbk 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. [section:ellint_intro Elliptic Integral Overview]
  2. The main reference for the elliptic integrals is:
  3. [:M. Abramowitz and I. A. Stegun (Eds.) (1964)
  4. Handbook of Mathematical Functions with Formulas, Graphs, and
  5. Mathematical Tables,
  6. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C.]
  7. and its recently revised version __DMLF, in particular
  8. [:[@https://dlmf.nist.gov/19 Elliptic Integrals, B. C. Carlson]]
  9. Mathworld also contain a lot of useful background information:
  10. [:[@http://mathworld.wolfram.com/EllipticIntegral.html Weisstein, Eric W.
  11. "Elliptic Integral." From MathWorld--A Wolfram Web Resource.]]
  12. As does [@http://en.wikipedia.org/wiki/Elliptic_integral Wikipedia Elliptic integral].
  13. [h4 Notation]
  14. All variables are real numbers unless otherwise noted.
  15. [h4 Definition]
  16. [equation ellint1]
  17. is called elliptic integral if ['R(t, s)] is a rational function
  18. of ['t] and ['s], and ['s[super 2]] is a cubic or quartic polynomial
  19. in ['t].
  20. Elliptic integrals generally cannot be expressed in terms of
  21. elementary functions. However, Legendre showed that all elliptic
  22. integrals can be reduced to the following three canonical forms:
  23. Elliptic Integral of the First Kind (Legendre form)
  24. [equation ellint2]
  25. Elliptic Integral of the Second Kind (Legendre form)
  26. [equation ellint3]
  27. Elliptic Integral of the Third Kind (Legendre form)
  28. [equation ellint4]
  29. where
  30. [equation ellint5]
  31. [note ['[phi]] is called the amplitude.
  32. ['k] is called the elliptic modulus or eccentricity.
  33. ['[alpha]] is called the modular angle.
  34. ['n] is called the characteristic.]
  35. [caution Perhaps more than any other special functions the elliptic
  36. integrals are expressed in a variety of different ways. In particular,
  37. the final parameter /k/ (the modulus) may be expressed using a modular
  38. angle [alpha], or a parameter /m/. These are related by:
  39. [expression k = sin[thin][alpha]]
  40. [expression m = k[super 2] = sin[super 2][alpha]]
  41. So that the integral of the third kind (for example) may be expressed as
  42. either:
  43. [expression [Pi](n, [phi], k)]
  44. [expression [Pi](n, [phi] \\ [alpha])]
  45. [expression [Pi](n, [phi] | m)]
  46. To further complicate matters, some texts refer to the ['complement
  47. of the parameter m], or 1 - m, where:
  48. [expression 1 - m = 1 - k[super 2] = cos[super 2][alpha]]
  49. This implementation uses /k/ throughout: this matches the requirements
  50. of the [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
  51. Technical Report on C++ Library Extensions].[br]
  52. So you should be extra careful when using these functions!]
  53. [warning Boost.Math order of arguments differs from other implementations: /k/ is always the *first* argument.]
  54. A simple example comparing use of __WolframAlpha with Boost.Math (including much higher precision using __multiprecision)
  55. is [@../../example/jacobi_zeta_example.cpp jacobi_zeta_example.cpp].
  56. When ['[phi]] = ['[pi]] / 2, the elliptic integrals are called ['complete].
  57. Complete Elliptic Integral of the First Kind (Legendre form)
  58. [equation ellint6]
  59. Complete Elliptic Integral of the Second Kind (Legendre form)
  60. [equation ellint7]
  61. Complete Elliptic Integral of the Third Kind (Legendre form)
  62. [equation ellint8]
  63. Legendre also defined a fourth integral /D([phi],k)/ which is a combination of the other three:
  64. [equation ellint_d]
  65. Like the other Legendre integrals this comes in both complete and incomplete forms.
  66. [h4 Carlson Elliptic Integrals]
  67. Carlson [[link ellint_ref_carlson77 Carlson77]] [[link ellint_ref_carlson78 Carlson78]] gives an alternative definition of
  68. elliptic integral's canonical forms:
  69. Carlson's Elliptic Integral of the First Kind
  70. [equation ellint9]
  71. where ['x], ['y], ['z] are nonnegative and at most one of them
  72. may be zero.
  73. Carlson's Elliptic Integral of the Second Kind
  74. [equation ellint10]
  75. where ['x], ['y] are nonnegative, at most one of them may be zero,
  76. and ['z] must be positive.
  77. Carlson's Elliptic Integral of the Third Kind
  78. [equation ellint11]
  79. where ['x], ['y], ['z] are nonnegative, at most one of them may be
  80. zero, and ['p] must be nonzero.
  81. Carlson's Degenerate Elliptic Integral
  82. [equation ellint12]
  83. where ['x] is nonnegative and ['y] is nonzero.
  84. [note ['R[sub C](x, y) = R[sub F](x, y, y)]
  85. ['R[sub D](x, y, z) = R[sub J](x, y, z, z)]]
  86. Carlson's Symmetric Integral
  87. [equation ellint27]
  88. [h4 Duplication Theorem]
  89. Carlson proved in [[link ellint_ref_carlson78 Carlson78]] that
  90. [equation ellint13]
  91. [h4 Carlson's Formulas]
  92. The Legendre form and Carlson form of elliptic integrals are related
  93. by equations:
  94. [equation ellint14]
  95. In particular,
  96. [equation ellint15]
  97. [h4 Miscellaneous Elliptic Integrals]
  98. There are two functions related to the elliptic integrals which otherwise
  99. defy categorisation, these are the Jacobi Zeta function:
  100. [equation jacobi_zeta]
  101. and the Heuman Lambda function:
  102. [equation heuman_lambda]
  103. Both of these functions are easily implemented in terms of Carlson's integrals, and are
  104. provided in this library as __jacobi_zeta and __heuman_lambda.
  105. [h4 Numerical Algorithms]
  106. The conventional methods for computing elliptic integrals are Gauss
  107. and Landen transformations, which converge quadratically and work
  108. well for elliptic integrals of the first and second kinds.
  109. Unfortunately they suffer from loss of significant digits for the
  110. third kind.
  111. Carlson's algorithm [[link ellint_ref_carlson79 Carlson79]] [[link ellint_ref_carlson78 Carlson78]], by contrast,
  112. provides a unified method for all three kinds of elliptic integrals with satisfactory precisions.
  113. [h4 References]
  114. Special mention goes to:
  115. [:A. M. Legendre, ['Trait[eacute] des Fonctions Elliptiques et des Integrales
  116. Euleriennes], Vol. 1. Paris (1825).]
  117. However the main references are:
  118. # [#ellint_ref_AS]M. Abramowitz and I. A. Stegun (Eds.) (1964)
  119. Handbook of Mathematical Functions with Formulas, Graphs, and
  120. Mathematical Tables,
  121. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C.
  122. # [@https://dlmf.nist.gov/19 NIST Digital Library of Mathematical Functions, Elliptic Integrals, B. C. Carlson]
  123. # [#ellint_ref_carlson79]B.C. Carlson, ['Computing elliptic integrals by duplication],
  124. Numerische Mathematik, vol 33, 1 (1979).
  125. # [#ellint_ref_carlson77]B.C. Carlson, ['Elliptic Integrals of the First Kind],
  126. SIAM Journal on Mathematical Analysis, vol 8, 231 (1977).
  127. # [#ellint_ref_carlson78]B.C. Carlson, ['Short Proofs of Three Theorems on Elliptic Integrals],
  128. SIAM Journal on Mathematical Analysis, vol 9, 524 (1978).
  129. # [#ellint_ref_carlson81]B.C. Carlson and E.M. Notis, ['ALGORITHM 577: Algorithms for Incomplete
  130. Elliptic Integrals], ACM Transactions on Mathematmal Software,
  131. vol 7, 398 (1981).
  132. # B. C. Carlson, ['On computing elliptic integrals and functions]. J. Math. and
  133. Phys., 44 (1965), pp. 36-51.
  134. # B. C. Carlson, ['A table of elliptic integrals of the second kind]. Math. Comp., 49
  135. (1987), pp. 595-606. (Supplement, ibid., pp. S13-S17.)
  136. # B. C. Carlson, ['A table of elliptic integrals of the third kind]. Math. Comp., 51 (1988),
  137. pp. 267-280. (Supplement, ibid., pp. S1-S5.)
  138. # B. C. Carlson, ['A table of elliptic integrals: cubic cases]. Math. Comp., 53 (1989), pp.
  139. 327-333.
  140. # B. C. Carlson, ['A table of elliptic integrals: one quadratic factor]. Math. Comp., 56 (1991),
  141. pp. 267-280.
  142. # B. C. Carlson, ['A table of elliptic integrals: two quadratic factors]. Math. Comp., 59
  143. (1992), pp. 165-180.
  144. # B. C. Carlson, ['[@http://arxiv.org/abs/math.CA/9409227
  145. Numerical computation of real or complex elliptic integrals]]. Numerical Algorithms,
  146. Volume 10, Number 1 / March, 1995, p13-26.
  147. # B. C. Carlson and John L. Gustafson, ['[@http://arxiv.org/abs/math.CA/9310223
  148. Asymptotic Approximations for Symmetric Elliptic Integrals]],
  149. SIAM Journal on Mathematical Analysis, Volume 25, Issue 2 (March 1994), 288-303.
  150. The following references, while not directly relevent to our implementation,
  151. may also be of interest:
  152. # R. Burlisch, ['Numerical Compuation of Elliptic Integrals and Elliptic Functions.]
  153. Numerical Mathematik 7, 78-90.
  154. # R. Burlisch, ['An extension of the Bartky Transformation to Incomplete
  155. Elliptic Integrals of the Third Kind]. Numerical Mathematik 13, 266-284.
  156. # R. Burlisch, ['Numerical Compuation of Elliptic Integrals and Elliptic Functions. III].
  157. Numerical Mathematik 13, 305-315.
  158. # T. Fukushima and H. Ishizaki, ['[@http://adsabs.harvard.edu/abs/1994CeMDA..59..237F
  159. Numerical Computation of Incomplete Elliptic Integrals of a General Form.]]
  160. Celestial Mechanics and Dynamical Astronomy, Volume 59, Number 3 / July, 1994,
  161. 237-251.
  162. [endsect] [/section:ellint_intro Elliptic Integral Overview]
  163. [/
  164. Copyright (c) 2006 Xiaogang Zhang
  165. Use, modification and distribution are subject to the
  166. Boost Software License, Version 1.0. (See accompanying file
  167. LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  168. ]