edge_connectivity.hpp 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. //=======================================================================
  2. // Copyright 2000 University of Notre Dame.
  3. // Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee
  4. //
  5. // Distributed under the Boost Software License, Version 1.0. (See
  6. // accompanying file LICENSE_1_0.txt or copy at
  7. // http://www.boost.org/LICENSE_1_0.txt)
  8. //=======================================================================
  9. #ifndef BOOST_EDGE_CONNECTIVITY
  10. #define BOOST_EDGE_CONNECTIVITY
  11. // WARNING: not-yet fully tested!
  12. #include <boost/config.hpp>
  13. #include <vector>
  14. #include <set>
  15. #include <algorithm>
  16. #include <boost/graph/edmonds_karp_max_flow.hpp>
  17. namespace boost {
  18. namespace detail {
  19. template <class Graph>
  20. inline
  21. std::pair<typename graph_traits<Graph>::vertex_descriptor,
  22. typename graph_traits<Graph>::degree_size_type>
  23. min_degree_vertex(Graph& g)
  24. {
  25. typedef graph_traits<Graph> Traits;
  26. typename Traits::vertex_descriptor p;
  27. typedef typename Traits::degree_size_type size_type;
  28. size_type delta = (std::numeric_limits<size_type>::max)();
  29. typename Traits::vertex_iterator i, iend;
  30. for (boost::tie(i, iend) = vertices(g); i != iend; ++i)
  31. if (degree(*i, g) < delta) {
  32. delta = degree(*i, g);
  33. p = *i;
  34. }
  35. return std::make_pair(p, delta);
  36. }
  37. template <class Graph, class OutputIterator>
  38. void neighbors(const Graph& g,
  39. typename graph_traits<Graph>::vertex_descriptor u,
  40. OutputIterator result)
  41. {
  42. typename graph_traits<Graph>::adjacency_iterator ai, aend;
  43. for (boost::tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai)
  44. *result++ = *ai;
  45. }
  46. template <class Graph, class VertexIterator, class OutputIterator>
  47. void neighbors(const Graph& g,
  48. VertexIterator first, VertexIterator last,
  49. OutputIterator result)
  50. {
  51. for (; first != last; ++first)
  52. neighbors(g, *first, result);
  53. }
  54. } // namespace detail
  55. // O(m n)
  56. template <class VertexListGraph, class OutputIterator>
  57. typename graph_traits<VertexListGraph>::degree_size_type
  58. edge_connectivity(VertexListGraph& g, OutputIterator disconnecting_set)
  59. {
  60. //-------------------------------------------------------------------------
  61. // Type Definitions
  62. typedef graph_traits<VertexListGraph> Traits;
  63. typedef typename Traits::vertex_iterator vertex_iterator;
  64. typedef typename Traits::edge_iterator edge_iterator;
  65. typedef typename Traits::out_edge_iterator out_edge_iterator;
  66. typedef typename Traits::vertex_descriptor vertex_descriptor;
  67. typedef typename Traits::degree_size_type degree_size_type;
  68. typedef color_traits<default_color_type> Color;
  69. typedef adjacency_list_traits<vecS, vecS, directedS> Tr;
  70. typedef typename Tr::edge_descriptor Tr_edge_desc;
  71. typedef adjacency_list<vecS, vecS, directedS, no_property,
  72. property<edge_capacity_t, degree_size_type,
  73. property<edge_residual_capacity_t, degree_size_type,
  74. property<edge_reverse_t, Tr_edge_desc> > > >
  75. FlowGraph;
  76. typedef typename graph_traits<FlowGraph>::edge_descriptor edge_descriptor;
  77. //-------------------------------------------------------------------------
  78. // Variable Declarations
  79. vertex_descriptor u, v, p, k;
  80. edge_descriptor e1, e2;
  81. bool inserted;
  82. vertex_iterator vi, vi_end;
  83. edge_iterator ei, ei_end;
  84. degree_size_type delta, alpha_star, alpha_S_k;
  85. std::set<vertex_descriptor> S, neighbor_S;
  86. std::vector<vertex_descriptor> S_star, non_neighbor_S;
  87. std::vector<default_color_type> color(num_vertices(g));
  88. std::vector<edge_descriptor> pred(num_vertices(g));
  89. //-------------------------------------------------------------------------
  90. // Create a network flow graph out of the undirected graph
  91. FlowGraph flow_g(num_vertices(g));
  92. typename property_map<FlowGraph, edge_capacity_t>::type
  93. cap = get(edge_capacity, flow_g);
  94. typename property_map<FlowGraph, edge_residual_capacity_t>::type
  95. res_cap = get(edge_residual_capacity, flow_g);
  96. typename property_map<FlowGraph, edge_reverse_t>::type
  97. rev_edge = get(edge_reverse, flow_g);
  98. for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
  99. u = source(*ei, g), v = target(*ei, g);
  100. boost::tie(e1, inserted) = add_edge(u, v, flow_g);
  101. cap[e1] = 1;
  102. boost::tie(e2, inserted) = add_edge(v, u, flow_g);
  103. cap[e2] = 1; // not sure about this
  104. rev_edge[e1] = e2;
  105. rev_edge[e2] = e1;
  106. }
  107. //-------------------------------------------------------------------------
  108. // The Algorithm
  109. boost::tie(p, delta) = detail::min_degree_vertex(g);
  110. S_star.push_back(p);
  111. alpha_star = delta;
  112. S.insert(p);
  113. neighbor_S.insert(p);
  114. detail::neighbors(g, S.begin(), S.end(),
  115. std::inserter(neighbor_S, neighbor_S.begin()));
  116. boost::tie(vi, vi_end) = vertices(g);
  117. std::set_difference(vi, vi_end,
  118. neighbor_S.begin(), neighbor_S.end(),
  119. std::back_inserter(non_neighbor_S));
  120. while (!non_neighbor_S.empty()) { // at most n - 1 times
  121. k = non_neighbor_S.front();
  122. alpha_S_k = edmonds_karp_max_flow
  123. (flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);
  124. if (alpha_S_k < alpha_star) {
  125. alpha_star = alpha_S_k;
  126. S_star.clear();
  127. for (boost::tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)
  128. if (color[*vi] != Color::white())
  129. S_star.push_back(*vi);
  130. }
  131. S.insert(k);
  132. neighbor_S.insert(k);
  133. detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));
  134. non_neighbor_S.clear();
  135. boost::tie(vi, vi_end) = vertices(g);
  136. std::set_difference(vi, vi_end,
  137. neighbor_S.begin(), neighbor_S.end(),
  138. std::back_inserter(non_neighbor_S));
  139. }
  140. //-------------------------------------------------------------------------
  141. // Compute edges of the cut [S*, ~S*]
  142. std::vector<bool> in_S_star(num_vertices(g), false);
  143. typename std::vector<vertex_descriptor>::iterator si;
  144. for (si = S_star.begin(); si != S_star.end(); ++si)
  145. in_S_star[*si] = true;
  146. degree_size_type c = 0;
  147. for (si = S_star.begin(); si != S_star.end(); ++si) {
  148. out_edge_iterator ei, ei_end;
  149. for (boost::tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)
  150. if (!in_S_star[target(*ei, g)]) {
  151. *disconnecting_set++ = *ei;
  152. ++c;
  153. }
  154. }
  155. return c;
  156. }
  157. } // namespace boost
  158. #endif // BOOST_EDGE_CONNECTIVITY