123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572 |
- //
- // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
- //
- // This software is provided 'as-is', without any express or implied
- // warranty. In no event will the authors be held liable for any damages
- // arising from the use of this software.
- // Permission is granted to anyone to use this software for any purpose,
- // including commercial applications, and to alter it and redistribute it
- // freely, subject to the following restrictions:
- // 1. The origin of this software must not be misrepresented; you must not
- // claim that you wrote the original software. If you use this software
- // in a product, an acknowledgment in the product documentation would be
- // appreciated but is not required.
- // 2. Altered source versions must be plainly marked as such, and must not be
- // misrepresented as being the original software.
- // 3. This notice may not be removed or altered from any source distribution.
- //
- #ifndef DETOURCOMMON_H
- #define DETOURCOMMON_H
- #include "DetourMath.h"
- #include <stddef.h>
- /**
- @defgroup detour Detour
- Members in this module are used to create, manipulate, and query navigation
- meshes.
- @note This is a summary list of members. Use the index or search
- feature to find minor members.
- */
- /// @name General helper functions
- /// @{
- /// Used to ignore a function parameter. VS complains about unused parameters
- /// and this silences the warning.
- /// @param [in] _ Unused parameter
- template<class T> void dtIgnoreUnused(const T&) { }
- /// Swaps the values of the two parameters.
- /// @param[in,out] a Value A
- /// @param[in,out] b Value B
- template<class T> inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; }
- /// Returns the minimum of two values.
- /// @param[in] a Value A
- /// @param[in] b Value B
- /// @return The minimum of the two values.
- template<class T> inline T dtMin(T a, T b) { return a < b ? a : b; }
- /// Returns the maximum of two values.
- /// @param[in] a Value A
- /// @param[in] b Value B
- /// @return The maximum of the two values.
- template<class T> inline T dtMax(T a, T b) { return a > b ? a : b; }
- /// Returns the absolute value.
- /// @param[in] a The value.
- /// @return The absolute value of the specified value.
- template<class T> inline T dtAbs(T a) { return a < 0 ? -a : a; }
- /// Returns the square of the value.
- /// @param[in] a The value.
- /// @return The square of the value.
- template<class T> inline T dtSqr(T a) { return a*a; }
- /// Clamps the value to the specified range.
- /// @param[in] v The value to clamp.
- /// @param[in] mn The minimum permitted return value.
- /// @param[in] mx The maximum permitted return value.
- /// @return The value, clamped to the specified range.
- template<class T> inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
- /// @}
- /// @name Vector helper functions.
- /// @{
- /// Derives the cross product of two vectors. (@p v1 x @p v2)
- /// @param[out] dest The cross product. [(x, y, z)]
- /// @param[in] v1 A Vector [(x, y, z)]
- /// @param[in] v2 A vector [(x, y, z)]
- inline void dtVcross(float* dest, const float* v1, const float* v2)
- {
- dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
- dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
- dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
- }
- /// Derives the dot product of two vectors. (@p v1 . @p v2)
- /// @param[in] v1 A Vector [(x, y, z)]
- /// @param[in] v2 A vector [(x, y, z)]
- /// @return The dot product.
- inline float dtVdot(const float* v1, const float* v2)
- {
- return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
- }
- /// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
- /// @param[out] dest The result vector. [(x, y, z)]
- /// @param[in] v1 The base vector. [(x, y, z)]
- /// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
- /// @param[in] s The amount to scale @p v2 by before adding to @p v1.
- inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
- {
- dest[0] = v1[0]+v2[0]*s;
- dest[1] = v1[1]+v2[1]*s;
- dest[2] = v1[2]+v2[2]*s;
- }
- /// Performs a linear interpolation between two vectors. (@p v1 toward @p v2)
- /// @param[out] dest The result vector. [(x, y, x)]
- /// @param[in] v1 The starting vector.
- /// @param[in] v2 The destination vector.
- /// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0]
- inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t)
- {
- dest[0] = v1[0]+(v2[0]-v1[0])*t;
- dest[1] = v1[1]+(v2[1]-v1[1])*t;
- dest[2] = v1[2]+(v2[2]-v1[2])*t;
- }
- /// Performs a vector addition. (@p v1 + @p v2)
- /// @param[out] dest The result vector. [(x, y, z)]
- /// @param[in] v1 The base vector. [(x, y, z)]
- /// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
- inline void dtVadd(float* dest, const float* v1, const float* v2)
- {
- dest[0] = v1[0]+v2[0];
- dest[1] = v1[1]+v2[1];
- dest[2] = v1[2]+v2[2];
- }
- /// Performs a vector subtraction. (@p v1 - @p v2)
- /// @param[out] dest The result vector. [(x, y, z)]
- /// @param[in] v1 The base vector. [(x, y, z)]
- /// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
- inline void dtVsub(float* dest, const float* v1, const float* v2)
- {
- dest[0] = v1[0]-v2[0];
- dest[1] = v1[1]-v2[1];
- dest[2] = v1[2]-v2[2];
- }
- /// Scales the vector by the specified value. (@p v * @p t)
- /// @param[out] dest The result vector. [(x, y, z)]
- /// @param[in] v The vector to scale. [(x, y, z)]
- /// @param[in] t The scaling factor.
- inline void dtVscale(float* dest, const float* v, const float t)
- {
- dest[0] = v[0]*t;
- dest[1] = v[1]*t;
- dest[2] = v[2]*t;
- }
- /// Selects the minimum value of each element from the specified vectors.
- /// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
- /// @param[in] v A vector. [(x, y, z)]
- inline void dtVmin(float* mn, const float* v)
- {
- mn[0] = dtMin(mn[0], v[0]);
- mn[1] = dtMin(mn[1], v[1]);
- mn[2] = dtMin(mn[2], v[2]);
- }
- /// Selects the maximum value of each element from the specified vectors.
- /// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
- /// @param[in] v A vector. [(x, y, z)]
- inline void dtVmax(float* mx, const float* v)
- {
- mx[0] = dtMax(mx[0], v[0]);
- mx[1] = dtMax(mx[1], v[1]);
- mx[2] = dtMax(mx[2], v[2]);
- }
- /// Sets the vector elements to the specified values.
- /// @param[out] dest The result vector. [(x, y, z)]
- /// @param[in] x The x-value of the vector.
- /// @param[in] y The y-value of the vector.
- /// @param[in] z The z-value of the vector.
- inline void dtVset(float* dest, const float x, const float y, const float z)
- {
- dest[0] = x; dest[1] = y; dest[2] = z;
- }
- /// Performs a vector copy.
- /// @param[out] dest The result. [(x, y, z)]
- /// @param[in] a The vector to copy. [(x, y, z)]
- inline void dtVcopy(float* dest, const float* a)
- {
- dest[0] = a[0];
- dest[1] = a[1];
- dest[2] = a[2];
- }
- /// Derives the scalar length of the vector.
- /// @param[in] v The vector. [(x, y, z)]
- /// @return The scalar length of the vector.
- inline float dtVlen(const float* v)
- {
- return dtMathSqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
- }
- /// Derives the square of the scalar length of the vector. (len * len)
- /// @param[in] v The vector. [(x, y, z)]
- /// @return The square of the scalar length of the vector.
- inline float dtVlenSqr(const float* v)
- {
- return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
- }
- /// Returns the distance between two points.
- /// @param[in] v1 A point. [(x, y, z)]
- /// @param[in] v2 A point. [(x, y, z)]
- /// @return The distance between the two points.
- inline float dtVdist(const float* v1, const float* v2)
- {
- const float dx = v2[0] - v1[0];
- const float dy = v2[1] - v1[1];
- const float dz = v2[2] - v1[2];
- return dtMathSqrtf(dx*dx + dy*dy + dz*dz);
- }
- /// Returns the square of the distance between two points.
- /// @param[in] v1 A point. [(x, y, z)]
- /// @param[in] v2 A point. [(x, y, z)]
- /// @return The square of the distance between the two points.
- inline float dtVdistSqr(const float* v1, const float* v2)
- {
- const float dx = v2[0] - v1[0];
- const float dy = v2[1] - v1[1];
- const float dz = v2[2] - v1[2];
- return dx*dx + dy*dy + dz*dz;
- }
- /// Derives the distance between the specified points on the xz-plane.
- /// @param[in] v1 A point. [(x, y, z)]
- /// @param[in] v2 A point. [(x, y, z)]
- /// @return The distance between the point on the xz-plane.
- ///
- /// The vectors are projected onto the xz-plane, so the y-values are ignored.
- inline float dtVdist2D(const float* v1, const float* v2)
- {
- const float dx = v2[0] - v1[0];
- const float dz = v2[2] - v1[2];
- return dtMathSqrtf(dx*dx + dz*dz);
- }
- /// Derives the square of the distance between the specified points on the xz-plane.
- /// @param[in] v1 A point. [(x, y, z)]
- /// @param[in] v2 A point. [(x, y, z)]
- /// @return The square of the distance between the point on the xz-plane.
- inline float dtVdist2DSqr(const float* v1, const float* v2)
- {
- const float dx = v2[0] - v1[0];
- const float dz = v2[2] - v1[2];
- return dx*dx + dz*dz;
- }
- /// Normalizes the vector.
- /// @param[in,out] v The vector to normalize. [(x, y, z)]
- inline void dtVnormalize(float* v)
- {
- float d = 1.0f / dtMathSqrtf(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2]));
- v[0] *= d;
- v[1] *= d;
- v[2] *= d;
- }
- /// Performs a 'sloppy' colocation check of the specified points.
- /// @param[in] p0 A point. [(x, y, z)]
- /// @param[in] p1 A point. [(x, y, z)]
- /// @return True if the points are considered to be at the same location.
- ///
- /// Basically, this function will return true if the specified points are
- /// close enough to eachother to be considered colocated.
- inline bool dtVequal(const float* p0, const float* p1)
- {
- static const float thr = dtSqr(1.0f/16384.0f);
- const float d = dtVdistSqr(p0, p1);
- return d < thr;
- }
- /// Checks that the specified vector's components are all finite.
- /// @param[in] v A point. [(x, y, z)]
- /// @return True if all of the point's components are finite, i.e. not NaN
- /// or any of the infinities.
- inline bool dtVisfinite(const float* v)
- {
- bool result =
- dtMathIsfinite(v[0]) &&
- dtMathIsfinite(v[1]) &&
- dtMathIsfinite(v[2]);
- return result;
- }
- /// Checks that the specified vector's 2D components are finite.
- /// @param[in] v A point. [(x, y, z)]
- inline bool dtVisfinite2D(const float* v)
- {
- bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[2]);
- return result;
- }
- /// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
- /// @param[in] u A vector [(x, y, z)]
- /// @param[in] v A vector [(x, y, z)]
- /// @return The dot product on the xz-plane.
- ///
- /// The vectors are projected onto the xz-plane, so the y-values are ignored.
- inline float dtVdot2D(const float* u, const float* v)
- {
- return u[0]*v[0] + u[2]*v[2];
- }
- /// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
- /// @param[in] u The LHV vector [(x, y, z)]
- /// @param[in] v The RHV vector [(x, y, z)]
- /// @return The dot product on the xz-plane.
- ///
- /// The vectors are projected onto the xz-plane, so the y-values are ignored.
- inline float dtVperp2D(const float* u, const float* v)
- {
- return u[2]*v[0] - u[0]*v[2];
- }
- /// @}
- /// @name Computational geometry helper functions.
- /// @{
- /// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C.
- /// @param[in] a Vertex A. [(x, y, z)]
- /// @param[in] b Vertex B. [(x, y, z)]
- /// @param[in] c Vertex C. [(x, y, z)]
- /// @return The signed xz-plane area of the triangle.
- inline float dtTriArea2D(const float* a, const float* b, const float* c)
- {
- const float abx = b[0] - a[0];
- const float abz = b[2] - a[2];
- const float acx = c[0] - a[0];
- const float acz = c[2] - a[2];
- return acx*abz - abx*acz;
- }
- /// Determines if two axis-aligned bounding boxes overlap.
- /// @param[in] amin Minimum bounds of box A. [(x, y, z)]
- /// @param[in] amax Maximum bounds of box A. [(x, y, z)]
- /// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
- /// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
- /// @return True if the two AABB's overlap.
- /// @see dtOverlapBounds
- inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
- const unsigned short bmin[3], const unsigned short bmax[3])
- {
- bool overlap = true;
- overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
- overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
- overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
- return overlap;
- }
- /// Determines if two axis-aligned bounding boxes overlap.
- /// @param[in] amin Minimum bounds of box A. [(x, y, z)]
- /// @param[in] amax Maximum bounds of box A. [(x, y, z)]
- /// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
- /// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
- /// @return True if the two AABB's overlap.
- /// @see dtOverlapQuantBounds
- inline bool dtOverlapBounds(const float* amin, const float* amax,
- const float* bmin, const float* bmax)
- {
- bool overlap = true;
- overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
- overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
- overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
- return overlap;
- }
- /// Derives the closest point on a triangle from the specified reference point.
- /// @param[out] closest The closest point on the triangle.
- /// @param[in] p The reference point from which to test. [(x, y, z)]
- /// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
- /// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
- /// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
- void dtClosestPtPointTriangle(float* closest, const float* p,
- const float* a, const float* b, const float* c);
- /// Derives the y-axis height of the closest point on the triangle from the specified reference point.
- /// @param[in] p The reference point from which to test. [(x, y, z)]
- /// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
- /// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
- /// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
- /// @param[out] h The resulting height.
- bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
- bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
- const float* verts, int nverts,
- float& tmin, float& tmax,
- int& segMin, int& segMax);
- bool dtIntersectSegSeg2D(const float* ap, const float* aq,
- const float* bp, const float* bq,
- float& s, float& t);
- /// Determines if the specified point is inside the convex polygon on the xz-plane.
- /// @param[in] pt The point to check. [(x, y, z)]
- /// @param[in] verts The polygon vertices. [(x, y, z) * @p nverts]
- /// @param[in] nverts The number of vertices. [Limit: >= 3]
- /// @return True if the point is inside the polygon.
- bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
- bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
- float* ed, float* et);
- float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
- /// Derives the centroid of a convex polygon.
- /// @param[out] tc The centroid of the polgyon. [(x, y, z)]
- /// @param[in] idx The polygon indices. [(vertIndex) * @p nidx]
- /// @param[in] nidx The number of indices in the polygon. [Limit: >= 3]
- /// @param[in] verts The polygon vertices. [(x, y, z) * vertCount]
- void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
- /// Determines if the two convex polygons overlap on the xz-plane.
- /// @param[in] polya Polygon A vertices. [(x, y, z) * @p npolya]
- /// @param[in] npolya The number of vertices in polygon A.
- /// @param[in] polyb Polygon B vertices. [(x, y, z) * @p npolyb]
- /// @param[in] npolyb The number of vertices in polygon B.
- /// @return True if the two polygons overlap.
- bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
- const float* polyb, const int npolyb);
- /// @}
- /// @name Miscellanious functions.
- /// @{
- inline unsigned int dtNextPow2(unsigned int v)
- {
- v--;
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v++;
- return v;
- }
- inline unsigned int dtIlog2(unsigned int v)
- {
- unsigned int r;
- unsigned int shift;
- r = (v > 0xffff) << 4; v >>= r;
- shift = (v > 0xff) << 3; v >>= shift; r |= shift;
- shift = (v > 0xf) << 2; v >>= shift; r |= shift;
- shift = (v > 0x3) << 1; v >>= shift; r |= shift;
- r |= (v >> 1);
- return r;
- }
- inline int dtAlign4(int x) { return (x+3) & ~3; }
- inline int dtOppositeTile(int side) { return (side+4) & 0x7; }
- inline void dtSwapByte(unsigned char* a, unsigned char* b)
- {
- unsigned char tmp = *a;
- *a = *b;
- *b = tmp;
- }
- inline void dtSwapEndian(unsigned short* v)
- {
- unsigned char* x = (unsigned char*)v;
- dtSwapByte(x+0, x+1);
- }
- inline void dtSwapEndian(short* v)
- {
- unsigned char* x = (unsigned char*)v;
- dtSwapByte(x+0, x+1);
- }
- inline void dtSwapEndian(unsigned int* v)
- {
- unsigned char* x = (unsigned char*)v;
- dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
- }
- inline void dtSwapEndian(int* v)
- {
- unsigned char* x = (unsigned char*)v;
- dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
- }
- inline void dtSwapEndian(float* v)
- {
- unsigned char* x = (unsigned char*)v;
- dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
- }
- void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
- const float s, const float t, float* out);
- template<typename TypeToRetrieveAs>
- TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(const unsigned char*& buffer, const size_t distanceToAdvance)
- {
- TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
- buffer += distanceToAdvance;
- return returnPointer;
- }
- template<typename TypeToRetrieveAs>
- TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(unsigned char*& buffer, const size_t distanceToAdvance)
- {
- TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
- buffer += distanceToAdvance;
- return returnPointer;
- }
- /// @}
- #endif // DETOURCOMMON_H
- ///////////////////////////////////////////////////////////////////////////
- // This section contains detailed documentation for members that don't have
- // a source file. It reduces clutter in the main section of the header.
- /**
- @fn float dtTriArea2D(const float* a, const float* b, const float* c)
- @par
- The vertices are projected onto the xz-plane, so the y-values are ignored.
- This is a low cost function than can be used for various purposes. Its main purpose
- is for point/line relationship testing.
- In all cases: A value of zero indicates that all vertices are collinear or represent the same point.
- (On the xz-plane.)
- When used for point/line relationship tests, AB usually represents a line against which
- the C point is to be tested. In this case:
- A positive value indicates that point C is to the left of line AB, looking from A toward B.<br/>
- A negative value indicates that point C is to the right of lineAB, looking from A toward B.
- When used for evaluating a triangle:
- The absolute value of the return value is two times the area of the triangle when it is
- projected onto the xz-plane.
- A positive return value indicates:
- <ul>
- <li>The vertices are wrapped in the normal Detour wrap direction.</li>
- <li>The triangle's 3D face normal is in the general up direction.</li>
- </ul>
- A negative return value indicates:
- <ul>
- <li>The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)</li>
- <li>The triangle's 3D face normal is in the general down direction.</li>
- </ul>
- */
|